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Monetary models

Part I

Miscellaneous notes

1 Monetary models

1.1 Money-in-the-utility-function models

1.1.1 Model 1

Household:

max
C1,C2,B1,M1

u(C1) + v

(
M1

P1

)
+ βu(C2), (1)

subject to:

P1C1 +M1 +B1 = P1Y1, λ1, (2)
P2C2 = P2Y2 +M1 + (1 +R)B1, λ2. (3)

First-order conditions:

u′(C1)− P1λ1 = 0, C1 (4)
βu′(C2)− P2λ2 = 0, C2 (5)

−λ1 + (1 +R)λ2 = 0, B1 (6)
1

P1

v′
(
M1

P1

)
− λ1 + λ2 = 0, M1. (7)

Hence:

v′(m1) =
R

1 +R
u′(C1), (8)

u′(C1) = β(1 + r)u′(C2). (9)

With logarithmic utility functions:

M1 = ϕP1

(
1 +R

R

)
C1, (10)

C2 = β(1 + r)C1. (11)

P1C1 + ϕP1

(
1 +R

R

)
C1 +

1

1 +R

[
P2β(1 + r)C1 − ϕP1

(
1 +R

R

)
C1

]
= P1Y1 +

1

1 +R
P2Y2

(12)

⇔ C1 =
1 + 1

1+r

1 + β + ϕ
P1

Y1. (13)
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1.1.2 A two-period model

Let:

m1 =
M1

P1

, (14)

b1 =
B1

P1

, (15)

1 + r2 =
P1

P2

(1 +R2) =
1 +R2

1 + ∆p2
, (16)

∆p2 = ln(P2)− ln(P1) ≈
P2 − P1

P1

, (17)

u(C) = ln(C), (18)

v

(
M

P

)
= ϕ ln

(
M

P

)
. (19)

Household:

max
C1,C2,L1,L2,B1,M1

u(C1,L1) + v

(
M1

P1

)
+ βu(C2,L2), (20)

subject to:

P1C1 +M1 +B1 = P1[w1(N − L1) + π1 − T1], λ1, (21)
P2C2 = P2[w2(N − L2) + π2 − T2] +M1 + (1 +R)B1, λ2. (22)

First-order conditions:

uC(C1,L1)− P1λ1 = 0, C1 (23)
βuC(C2,L2)− P2λ2 = 0, C2 (24)
uL(C1,L1)− P1w1λ1 = 0, L1 (25)

βuL(C2,L2)− P2w2λ2 = 0, L2 (26)
−λ1 + (1 +R)λ2 = 0, B1 (27)

1

P1

v′
(
M1

P1

)
− λ1 + λ2 = 0 M1. (28)

Hence:

uL(C1,L1) = w1uC(C1,L1), (29)
uL(C2,L2) = w2uC(C1,L1), (30)

v′(m1) =
R

1 +R
uC(C1,L1), (31)

uC(C1,L1) = β(1 + r)uC(C2,L2). (32)
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With logarithmic utility functions:

w1L1 = C1, (33)
w2L2 = C2, (34)

M1 = ϕP1

(
1 +R

R

)
C1, (35)

C2 = β(1 + r)C1. (36)

Firm:

max
L1,L2,I1,K1

P1[z1F (K0, L1)− w1L1 − I1] +
1

1 +R
P2[z2F (K1, L2)− w2L2 + (1− δ)K1],

(37)

subject to:

K1 = (1− δ)K0 + I1, µ. (38)

First-order conditions:

P1[z1FL(K0, L1)− w1] = 0, L1 (39)
P2[z2FL(K1, L2)− w2] = 0, L2 (40)

−P1 + µ = 0, I1 (41)
1

1 +R
P2[z2FK(K1, L2) + (1− δ)]− µ = 0 K1. (42)

Hence:

w1 = z1FL(K0, L1), (43)
w2 = z2FL(K1, L2), (44)
z2FK(K1, L2) = r + δ (45)

Government:

P1G1 = P1T1 +B1 +M1, (46)
P2G2 + (1 +R)B1 +M1 = P2T2. (47)

Hence:

G1 +
1

1 + r
G2 = T1 +

R

1 +R

M1

P1

+
1

1 + r
T2. (48)

1.1.3 An infinite-horizon model

Reference: Walsh (2001, chapter 2)
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2 The government’s budget constraint and Ricardian equival-
ence

2.1 Model with exogenous income

The maximization problem for the representative consumer is:

max
C1

u(C1) + βu(C2), (49)

where

C2 = (1 + r)(Y1 − T1 − C1) + Y2 − T2. (50)

The first-order condition leads to the Euler equation:

u′(C1) = β(1 + r)u′(C2). (51)

Assuming logarithmic utility, we get:

C2 = β(1 + r)C1. (52)

Additional assumptions:

T2 = (1 + r)(G1 − T1) +G2, (53)
Sp
1 = Y1 − T1 − C1. (54)

The model consists of the four equations (50), (52), (53) and (54). Correspondingly, there are four
endogenous variables: C1, C2, T2 and Sp

1 . Solving for the endogenous variables, we get:

C1 =
1

1 + β

(
Y1 −G1 +

Y2 −G2

1 + r

)
, (55)

C2 =
β

1 + β
(1 + r)

(
Y1 −G1 +

Y2 −G2

1 + r

)
, (56)

T2 = (1 + r)(G1 − T1) +G2, (57)

Sp
1 = Y1 − T1 −

1

1 + β

(
Y1 −G1 +

Y2 −G2

1 + r

)
. (58)

2.1.1 Result 1: Ricardian equivalence

Lowering T1 by 1 unit implies a rise of T2 by 1 + r units. Hence C1 and C2 are not affected by the
way taxes are distributed over the two periods. This is called Ricardian equivalence. A fall of T1

is matched by a corresponding rise in savings, Sp
1 .
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2.1.2 Result 2: Fiscal policy

A rise of G1 by 1 unit implies a fall (!) of C1 by 1/(1+β) units and of C2 by β(1+r)/(1+β) units.
This is because higher current government spending, G1, implies a rise in future taxation, T2.

Similarly, a rise of G2 by 1 unit leads to a fall of C1 by 1/[(1 + β)(1 + r)] units and of C2 by
β/(1 + β) units.

2.2 Model with endogenous income

Suppose we add the following equation to the model given by the equations (50), (52), (53) and
(54):

Y1 = C1 +G1. (59)

The model has now five equations. The five endogenous variables are: C1, C2, T2, Y1 and Sp
1 . The

solution is as follows:

C1 =
Y2 −G2

β(1 + r)
, (60)

C2 = Y2 −G2, (61)
T2 = (1 + r)(G1 − T1) +G2, (62)

Y1 =
Y2 −G2

β(1 + r)
+G1, (63)

Sp
1 = Y1 − T1 −

Y2 −G2

β(1 + r)
. (64)

2.2.1 Result 1: Ricardian equivalence

Ricardian equivalence still holds. Lowering T1 by 1 unit implies a rise of T2 by 1+ r units. Hence
C1 and C2 are not affected by the way taxes are distributed over the two periods.

2.2.2 Result 2: Fiscal policy

Fiscal policy in the current period, G1, leaves consumption in both periods unchanged. A rise in
G1 by 1 unit raises Y1 by 1 unit (expansionary fiscal policy) and T2 by 1 + r units, leaving the
present discounted value of the consumer’s current and future disposable incomes unchanged.

A rise in future government spending, G2, has a negative impact on consumption in both periods.
The consumer knows that higher government spending in the second period has to be financed by
higher future taxes, so he or she chooses to reduce consumption accordingly.
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2.2.3 Result 3: Accelerator effect

Note that the effect of Y2 and G2 on present consumption, C1, and income, Y1, is now much
stronger than in the previous model. The corresponding derivative of C1 with respect to G2 is
now −1/[β(1 + r)], whereas before it was −1/[(1 + β)(1 + r)]. This is because there is now a
feedback of current consumption on current income. A rise of, say, G2 by 1 unit makes C1 fall
by 1/[(1 + β)(1 + r)] units, this leads to fall of Y1 by the same amount, another fall of C1 by
1/[(1 + β)2(1 + r)] units, a corresponding fall of Y1 etc. Hence the total fall of C1 (and hence Y1)
is:

∆C1 = − 1

1 + β

(
1 +

1

1 + β
+

1

(1 + β)2
+

1

(1 + β)3
+ . . .

)
1

1 + r
∆G2

= − 1

β

1

1 + r
∆G2.

(65)

Note that we have applied here the formula for the infinite geometric series. Provided |x| < 1,

1 + x+ x2 + x3 + . . . =
1

1− x
. (66)
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3 Digression on growth rates

3.1 Growth accounting

We can derive the relationships between growth rates by direct calculation in both discrete and
continuous time.

In the continuous-time case, we may alternatively use ”log-differentiation”, that is:

• first take the logarithm of a variable and

• then differentiate the resulting logarithm with respect to time.

This produces exact growth rates since:

d log(zt)

dt
=

1

zt
× dzt

dt
=

żt
zt

= ẑt, (67)

where the dot above zt indicates the derivative of that variable with respect to time and where the
hat above zt indicates its percentage change.

In the discrete-time case, we may alternatively use ”log-differencing”, that is:

• first take the logarithm of a variable and

• then apply the difference operator.

This produces approximate growth rates since:

∆ log(zt+1) = log

(
zt+1

zt

)
= log

(
1 +

zt+1 − zt
zt

)
≈ zt+1 − zt

zt
= ẑt, (68)

where the approximation is good provided (zt+1 − zt)/zt is small.

3.1.1 Example 1: Summation of variables

Summation of variables:

z = x+ y. (69)

Direct calculation in discrete time:

ẑt =
∆zt+1

zt
=

∆xt+1 +∆yt+1

zt
=

xt

zt

∆xt+1

xt

+
yt
zt

∆yt+1

yt
=

xt

zt
x̂t +

yt
zt
ŷt. (70)
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Log-differencing:

ẑt ≈ ∆ log(zt+1) = ∆ log(xt+1 + yt+1) ≈
xt+1 + yt+1 − (xt + yt)

zt
=

xt

zt
x̂t +

yt
zt
ŷt. (71)

Direct calculation in continuous time:

ẑ =
ż

z
=

ẋ+ ẏ

x+ y
=

x

z

ẋ

x
+

y

z

ẏ

y
=

x

z
x̂+

y

z
ŷ. (72)

Log-differentiation:

ẑ =
d log(z)

dt
=

d log(x+ y)

dt
=

ẋ+ ẏ

x+ y
=

x

z

ẋ

x
+

y

z

ẏ

y
=

x

z
x̂+

y

z
ŷ. (73)

3.1.2 Example 2: Multiplication of variables

Multiplication of variables:

z = xy. (74)

Direct calculation in discrete time:

ẑt =
∆zt+1

zt
=

∆(xt+1yt+1)

xtyt
=

[xt +∆xt+1][yt +∆yt+1]− xtyt
xtyt

= x̂t + ŷt + x̂tŷt ≈ x̂t + ŷt.

(75)

Log-differencing:

ẑt ≈ ∆ log(zt+1) = ∆ log(xt+1yt+1) = ∆ log(xt+1) + ∆ log(yt+1) ≈ x̂t + ŷt. (76)

Direct calculation in continuous time:

ẑ =
ż

z
=

ẋy + xẏ

xy
= x̂+ ŷ. (77)

Log-differentiation:

ẑ =
d log(z)

dt
=

d[log(x) + log(y)]

dt
=

ẋ

x
+

ẏ

y
= x̂+ ŷ. (78)
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3.1.3 Example 3: Division of variables

Division of variables:

z =
x

y
. (79)

Direct calculation in discrete time:

ẑt =
∆zt+1

zt
=

xt+∆xt+1

yt+∆yt+1
− xt

yt
xt

yt

=
1 + x̂t − (1 + ŷt)

1 + ŷt
=

x̂t − ŷt
1 + ŷt

≈ x̂t − ŷt. (80)

Log-differencing:

ẑt ≈ ∆ log(zt+1) = ∆ log(xt+1/yt+1) = ∆ log(xt+1)−∆ log(yt+1) ≈ x̂t − ŷt. (81)

Direct calculation in continuous time:

ẑ =
ż

z
=

ẋy−xẏ
y2

x
y

=
ẋy − xẏ

xy
= x̂− ŷ. (82)

Log-differentiation:

ẑ =
d log(z)

dt
=

d[log(x)− log(y)]

dt
=

ẋ

x
− ẏ

y
= x̂− ŷ. (83)

3.1.4 Example 4: Multiplying a variable with a constant

Multiplying a variable with a constant:

z = ax. (84)

Direct calculation in discrete time:

ẑt =
∆zt+1

zt
=

axt+1 − axt

axt

=
xt+1 − xt

xt

= x̂t. (85)

Log-differencing:

ẑt ≈ ∆ log(zt+1) = ∆ log(axt+1)

= log(a) + log(xt+1)− [log(a) + log(xt)] = ∆ log(xt+1) ≈ x̂t.
(86)

Direct calculation in continuous time:

ẑ =
ż

z
=

aẋ

ax
=

ẋ

x
= x̂. (87)

Log-differentiation:

ẑ =
d log(z)

dt
=

d log(ax)

dt
=

d log(a)

dt
+

d log(x)

dt
=

d log(x)

dt
= x̂. (88)
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3.1.5 Example 5: Taking the power of a variable

Taking the power of a variable:

z = xa. (89)

Direct calculation in discrete time:

ẑt =
∆zt+1

zt
=

xa
t+1 − xa

t

xa
t

≈
xa
t + axa−1

t ∆xt+1 +
1
2
a(a− 1)xa−2

t (∆xt+1)
2 − xa

t

xa
t

≈ ax̂t,

(90)

provided ∆xt+1 is small, where xa
t+1 has been approximated using a second-order Taylor series

expansion around xt.

Log-differencing:

ẑt ≈ ∆ log(zt+1) = ∆ log(xa
t+1) = a∆ log(xt+1) ≈ ax̂t. (91)

Direct calculation in continuous time:

ẑ =
ż

z
=

axa−1ẋ

xa
= ax̂. (92)

Log-differentiation:

ẑ =
d log(z)

dt
=

d log(xa)

dt
= a

d log(x)

dt
= ax̂. (93)
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4 Elasticity of intertemporal substitution

An asset that is continuously reinvested with a net return of r has the following value V :

Vt = ert. (94)

The net return during an infinitesimally small period dt is r since by L’Hôpital’s rule:

dVt

Vt

= lim
dt→0

erdt − 1

dt
= lim

dt→0

rerdt

1
= r. (95)

The elasticity of intertemporal substitution is defined as:

σ =
ddC

C

ddVt

Vt

=
ddC

C

dr
. (96)

It turns out that the elasticity of intertemporal substitution, σ, is equal to the inverse of the para-
meter of relative risk aversion, γ. To see this, one can combine the above definition of the elasticity
of intertemporal substitution with the Euler equation that results from optimizing consumption over
time. The Euler equation yields:

u′(C) = β(1 + r)u′(C + dC) (97)

⇒ r ≈ ln(1 + r) = − ln(β)− ln

(
u′(C + dC)

u′(C)

)
= − ln(β)− du′(C)

u′(C)
(98)

⇒ dr = −d ln

(
u′(C + dC)

u′(C)

)
= −d

du′(C)

u′(C)
. (99)

Now substitute the return of the asset, r, into the definition of the elasticity of intertemporal sub-
stitution, σ:

σ =
ddC

C

dr
= −

ddC
C

ddu′(C)
u′(C)

= − u′(C)

Cu′′(C)
=

1

γ
. (100)
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