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International Macroeconomics

Part I

Aims of the course
The students of this course follow three different master programmes at the UAM:

• Master en Economı́a Internacional,

• Master en Economı́a Cuantitativa,

• Master en Globalización y Polı́ticas Públicas.

This course aims to offer something for all three groups by discussing:

• some of the theory and empirics of international macroeconomics,

• econometric applications in international macroeconomics,

• the challenges for macroeconomic policy in a globalizing world.

Methodology Use in international economics Example

Difference equations Exchange rate behaviour Müller-Plantenberg (2006)
Differential equations Hyperinflations Cagan (1956)

Currency crises Flood and Garber (1984)
Müller-Plantenberg (2010)

Intertemporal optimization Dynamic general equilibrium Obstfeld and Rogoff (1996)
Current account determination Obstfeld and Rogoff (1995)

Present value models Current account determination Bergin and Sheffrin (2000)
Continuous-time finance Exchange rate behaviour Dumas (1992)

Hau and Rey (2006)
Vector autoregressions Real exchange rate behaviour Blanchard and Quah (1989)

Clarida and Galı́ (1994)
Cointegration Purchasing power parity Enders (1988)
Error correction models Exchange rate pass-through Fujii (2006)
Nonlinear time series Nonlinear adjustment towards PPP Obstfeld and Taylor (1997)
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Part II

Basic models

1 Balassa-Samuelson effect

The Balassa-Samuelson effect is a tendency for countries with higher productivity in tradables
compared with nontradables to have higher price levels (Balassa, 1964, Samuelson, 1964).

1.1 Growth accounting

Often we can derive relationships between growth rates by

• first taking logs of variables,

• then differentiating the resulting logarithms with respect to time.

1.1.1 Example 1

z = xy

⇒ log(z) = log(x) + log(y)

⇒ ż

z
=

ẋ

x
+

ẏ

y

⇒ ẑ = x̂+ ŷ,

where the dot above a variable indicates the derivative of that variable with respect to time and the
hat above a variable the (continuous) percentage change of that variable.

1.1.2 Example 2

z =
x

y

⇒ log(z) = log(x)− log(y)

⇒ ż

z
=

ẋ

x
− ẏ

y

⇒ ẑ = x̂− ŷ,
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1.1.3 Example 3

z = x+ y

⇒ log(z) = log(x+ y)

⇒ ż

z
=

ẋ+ ẏ

x+ y
=

x

z

ẋ

x
+

y

z

ẏ

y

⇒ ẑ =
x

z
x̂+

y

z
ŷ

1.2 The price of non-traded goods with mobile capital

We consider an economy with traded and nontraded goods (p. 199–214, Obstfeld and Rogoff,
1996). We are interested to determine what drives the relative price of nontraded goods, PN .
(That is, PN is the price of nontradables in terms of the price of tradables which for simplicity is
normalized to unity, pT = 1).

We make two important assumptions:

• Capital is mobile between sectors and between countries.

• Labour is mobile between sectors but not between countries.

There are two production functions, one for tradables and one for nontradables, both with constant
returns to scale:

YT = ATF (KT , LT ), (1)
YN = ANG(KN , LN). (2)

The assumption of constant returns to scale implies that we can work with the production function
in intensive form (here, in per capita terms):

yT :=
YT

LT

=
ATF (KT , LT )

LT

= ATF

(
KT

LT

, 1

)
= ATF (kT , 1) = ATf(kT ), (3)

yN :=
YN

LN

=
ANG(KN , LN)

LN

= ANG

(
KN

LN

, 1

)
= ANG(kN , 1) = ANg(kN). (4)

The marginal products of capital and labour in the tradables sector are therefore:

MPKT :=
∂ATLTf(k)

∂KT

= ATLTf
′(k)

1

LT

= ATf
′(k), (5)

MPLT :=
∂ATLTf(k)

∂LT

= AT

[
f(k) + LTf

′(k)

(
−KT

L2
T

)]
= AT [f(k)− kf ′(k)] . (6)

The marginal products of capital and labour in the nontradables sector are:

MPKN = ANg
′(k), (7)

MPLN = AN [g(k)− kg′(k)] . (8)
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Suppose now that firms maximize the present value of their profits (measured in units of tradables):
∞∑
s=t

(
1

1 + r

)s−t

[AT,sF (KT,s, LT,s)− wsLT,s − (KT,s+1 −KT,s)], (9)

∞∑
s=t

(
1

1 + r

)s−t

[PN,sAN,sF (KN,s, LN,s)− wsLN,s − (KN,s+1 −KN,s)]. (10)

Profit maximization yields four equations with four unknowns (w, PN , kT , kN ):

MPKT = ATf
′(kT ) = r, (11)

MPLT = AT [f(kT )− f ′(kT )kT ] = w, (12)
MPKN = PNANg

′(kN) = r, (13)
MPLN = PNAN [g(kN)− g′(kN)kN ] = w. (14)

By combining equations (11) and (12) as well as equations (13) and (14), we find that the per
capita products in both sectors are equal to the per capita cost of the factor inputs:

ATf(kT ) = rkT + w, (15)
PNANg(kN) = rkN + w. (16)

Equations (15) and (16) just represent Euler’s theorem for the constant-returns-to-scale production
function (in this case, in per capita terms). Both equations become more tractable once we take
logs and differentiate with respect to time. We start with equation (15):

log(AT ) + log(f(kT )) = log(rkT + w) (17)

⇒ ȦT

AT

+
f ′(kT )k̇T
f(kT )

=
rk̇T + ẇ

rkT + w
=

rk̇T + ẇ

ATf(kT )
(18)

⇒ ÂT +
rkT

ATf(kT )
k̂T =

rkT
ATf(kT )

k̂T +
w

ATf(kT )
ŵ (19)

⇒ ÂT = µLT ŵ, (20)

where

µLT :=
w

ATf(kT )
. (21)

Note that we assume that the interest rate is constant. For equation (16) we get a similar result:

P̂N + ÂN = µLN ŵ, (22)

where

µLN :=
w

ANg(kN)
. (23)

As seems intuitive, wages in the traded and nontraded goods sectors are determined by the pro-
ductivity growth rates and wage shares in both sectors. By combining the last two results, we find
that the relative price of nontradables grows according to the following equation:

P̂N =
µLN

µLT

ÂT − ÂN . (24)
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Note that it is plausible to assume that the production of nontradables is relatively labour-intensive:

µLN

µLT

≥ 1. (25)

1.3 Balassa-Samuelson effect

We assume there are two countries:

• Traded goods have the same price at home and abroad (equal to unity).

• Nontraded goods have distinct prices at home and abroad, PN and P ∗
N .

We suppose further that the domestic and foreign price levels are geometric averages of the prices
of tradables and nontradables:

P = P γ
TP

1−γ
N = P 1−γ

N , (26)
P ∗ = (P ∗

T )
γ(P ∗

N)
1−γ = (P ∗

N)
1−γ. (27)

The real exchange rate thus depends only on the relative prices of nontradables:

Q =
P

P ∗ =

(
PN

P ∗
N

)1−γ

(28)

To see how the inflation rates differ in both countries, we can log-differentiate this ratio:

P̂ − P̂ ∗ = (1− γ)(P̂N − P̂ ∗
N)

= (1− γ)

[
µLN

µLT

(ÂT − Â∗
T )− (ÂN − Â∗

N)

]
= (1− γ)

[(
µLN

µLT

ÂT − ÂN

)
−
(
µLN

µLT

Â∗
T − Â∗

N

)] (29)

The country with the higher productivity growth in tradables compared with nontradables experi-
ences a real appreciation over time (for example, Japan versus the United States in the second half
of the twentieth century).

The reasoning here can also explain why rich countries tend to have higher price levels:

• Rich countries have become rich due to higher productivity growth.

• In general, productivity growth in rich countries has been particularly high in the tradables
sector compared with nontradables sector.
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1.4 Accounting for real exchange rate changes

Let us now turn to the question how the prices of nontraded goods affect the real exchange rate at
different horizons.

First, we express the real exchange rate in terms of tradables and nontradables prices (all in logar-
ithms):

q = s+ p− p∗

= s+ γ(pT − p∗T ) + (1− γ)(pN − p∗N)

= s+ (pT − p∗T ) + (1− γ) [(pN − pT )− (p∗N − p∗T )]

= x+ y,

(30)

where

x = s+ (pT − p∗T ),

y = (1− γ) [(pN − pT )− (p∗N − p∗T )] .

Differentiation with respect to time yields:

q̂ = x̂ + ŷ (31)
= ŝ+ (p̂T − p̂∗T ) + (1− γ) [(p̂N − p̂T )− (p̂∗N − p̂∗T )] .

(32)

1.4.1 Theory versus empirics

• According to the Balassa-Samuelson hypothesis, most of the changes in the real exchange
rate at long horizons are accounted for by differences in the relative prices of nontradable
goods, y.

• Similarly, most of the recent literature on real exchange rates emphasizes movements in the
nontraded-goods component, y.

• However, Engel (1999) has shown empirically that the nontraded-goods component, y, has
accounted for little of the movement in real exchange rates [...] at any horizon:

While I cannot be very confident about my findings at longer horizons, knowledge
of the behaviour of the relative price on nontraded goods contributes practically
nothing to one’s understanding of [...] real exchange rates.

1.4.2 Real appreciation of the yen

Engel (1999) discusses whether the real appreciation of the yen over recent decades can be ac-
counted for by changes in the relative prices of nontradables:
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• Nontraded-goods prices have risen steadily relative to traded-goods prices in Japan since
1970; at the same time, the yen has, consistent with the theory, appreciated considerably in
real terms.

• However, the rise in nontraded-goods prices may not be responsible for the rise of the yen
after all:

– First, the increase in the relative price of nontraded goods in Japan was about 40%,
whereas the real exchange rate appreciated around 90%.

– Second, the relative price of nontradables rose rather monotonously, yet there were
periods of strong depreciation of the yen.

– Finally, the relative price of nontradables rose elsewhere as well, reducing the size of y.
For instance, the relative price of nontradables in the United States has closely mirrored
the relative price of nontradables in Japan.

1.4.3 Conclusions

• At long horizons, the Balassa-Samuelson hypothesis may be valid and differences in relative
prices may be responsible for movements in the real exchange rate.

• At least at short and medium horizons, however, it is the difference of tradable-goods prices
that is mainly responsible for the movements of the real exchange rate.

• It is quite possible that changes in the real exchange rate stem primarily from changes in the
nominal exchange rates, even at rather long horizons.
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Part III

Difference equations

2 Introduction to difference equations

Much of economic analysis, particularly in macroeconomics, nowadays centers on the analysis of
time series.

Time series analysis:

• Time series analysis is concerned with the estimation of difference equations containing
stochastic components.

2.1 Definition

Difference equations express the value of a variable in terms of:

• its own lagged values,

• time and other variables.

2.2 Examples

2.2.1 Difference equation with trend, seasonal and irregular

yt = Tt + St + It observed variables, (33)
Tt = 1 + 0, 1t trend, (34)

St = 1, 6 sin
(π
6
t
)

seasonal, (35)

It = 0, 7It−1 + εt irregular. (36)

Equation (33) is a difference equation.

2.2.2 Random walk

Stock price modelled as random walk:

yt+1 = yt + εt+1,
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where

yt = stock price,
εt+1 = random disturbance.

Test:

∆yt+1 = α0 + α1yt + εt+1.

H0: α0 = 0, α1 = 0.

H1: otherwise.

2.2.3 Reduced-form and structural equations

Samuelson’s (1939) classic model:

yt = ct + it, (37)
ct = αyt−1 + εc,t, 0 < α < 1, (38)
it = β(ct − ct−1) + εi,t, β > 0, (39)

where

yt := real GDP,
ct := consumption,
it := investment,

εc,t ∼ (0, σ2
c ),

εi,t ∼ (0, σ2
i ).

(40)

Structural equation A structural equation expresses an endogenous variable in terms of:

• the current realization of another endogenous variable (among other variables)

Reduced-form equation A reduced-form equation is one expressing the value of a variable in
terms of:

• its own lags,

• lags of other endogenous variables,

• current and past values of exogenous variables,

• disturbance terms.

Therefore,
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• equation (37) is a structural equation,

• equation (38) is a reduced-form equation,

• equation (39) is a structural equation,

Equation (39) in reduced form:

it = αβ(yt−1 − yt−2) + β(εc,t − εc,t−1) + εi,t. (41)

Equation (39) in univariate reduced form:

yt = α(1 + β)yt−1 − αβyt−2 + (1 + β)εc,t − βεc,t−1 + εi,t. (42)

2.2.4 Error correction

The Unbiased Forward Rate (UFR) hypothesis asserts:

st+1 = ft + εt+1 (43)

with

Et(εt+1) = 0, (44)

where

ft = forward exchange rate. (45)

We can test the UFR hypothesis as follows:

st+1 = α0 + α1ft + εt+1, (46)

H0 : α0 = 0, α1 = 1, Et(εt+1) = 0,

H1 : otherwise.
(47)

Adjustment process:

st+2 = st+1 − α(st+1 − ft) + εs,t+2, α > 0, (48)
ft+1 = ft + β(st+1 − ft) + εf,t+1, β > 0. (49)

2.2.5 General form of difference equation

An nth-order difference equation with constant coefficients can be written as follows:

yt = α0 +
n∑

i=1

αiyt−i + xt, (50)

where xt is a forcing process, which can be a function of:

• time,

• current and lagged values of other variables,

• stochastic disturbances.
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2.2.6 Solution to a difference equation

The solution to a difference equation is a function of:

• elements of the forcing process xt,

• time t,

• initial conditions (given elements of the y sequence).

Example:

yt = yt−1 + 2, difference equation, (51)
yt = 2t+ c, solution. (52)

2.3 Lag operator

The lag operator L (backshift operator) is defined as follows:

Liyt = yt−i, i = 0,±1,±2, . . . (53)

Some implications:

Lc = c, where c is a constant, (54)

(Li + Lj)yt = Liyt + Ljyt = yt−i + yt−j, (55)

LiLjyt = Liyt−j = yt−i−j, (56)

LiLjyt = Li+jyt = yt−i−j, (57)

L−iyt = yt+i. (58)

2.4 Solving difference equations by iteration

2.4.1 Sums of geometric series

Note that when |k| < 1,
m∑
i=0

ki =
1− km+1

1− k
and lim

m→∞

m∑
i=0

ki =
1

1− k
, (59)

since

1 + k + k2 + . . .+ km =
1− km+1

1− k
(60)

⇔ (1− k)(1 + k + k2 + . . .+ km)

= 1− k + k − k2 + . . .+ km−1 − km + km − km+1

= 1− km+1.

(61)
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Note that when |k| > 1,

m∑
i=0

k−i =
−k + k−m

1− k
and lim

m→∞

m∑
i=0

k−i =
−k

1− k
, (62)

since
m∑
i=0

k−i =
m∑
i=0

(
k−1
)i

=
1− (k−1)

m+1

1− (k−1)
=

k − k−m

k − 1
=

−k + k−m

1− k
. (63)

2.4.2 Iteration with initial condition - case where |a1| < 1

Consider the first-order linear difference equation:

yt = a0 + a1yt−1 + xt. (64)

Iterating forward, using a given initial condition:

y1 = a0 + a1y0 + x1

y2 = a0 + a1y1 + x2

= a0 + a1(a0 + a1y0 + x1) + x2

= a0 + a0a1 + a21y0 + a1x1 + x2

. . .

yt = a0

t−1∑
i=0

ai1 + at1y0 +
t−1∑
i=0

ai1xt−i.

(65)

2.4.3 Iteration with initial condition - case where |a1| = 1

What if |a| = 1?

yt = a0 + yt−1 + xt ⇔ ∆yt = a0 + xt. (66)

Iterate forward:

y1 = a0 + y0 + x1

y2 = a0 + y1 + x2

= a0 + a0 + a1y0 + x1 + x2

= a0 + a0 + y0 + x1 + x2

. . .

yt = a0t+ y0 +
t∑

i=1

xt−i.

(67)
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2.4.4 Iteration without initial condition - case where |a1| < 1

Iterating backward:

yt = a0 + a1yt−1 + xt

= a0 + a1(a0 + a1yt−2 + xt−1) + xt

= a0 + a0a1 + a21yt−2 + xt + a1xt−1

= . . .

= a0

m∑
i=0

ai1 + am+1
1 yt−m−1 +

m∑
i=0

ai1xt−i.

(68)

If |a1| < 1, we therefore obtain the following solution:

yt = a0
1− am+1

1

1− a1
+ am+1

1 yt−m−1 +
m∑
i=0

ai1xt−i, (69)

which in the limit simplifies to:

yt =
a0

1− a1
+

∞∑
i=0

ai1xt−i. (70)

A more general solution:

yt = Aat1 +
a0

1− a1
+

∞∑
i=0

ai1xt−i. (71)

2.4.5 Iteration without initial condition - case where |a1| > 1

To obtain a converging solution when |a1| > 1, it is necessary to invert equation (64) and to iterate
it forward:

yt = a0 + a1yt−1 + xt (72)

⇔ yt = −a0
a1

+
1

a1
yt+1 −

1

a1
xt+1

= −a0
a1

m∑
i=0

(
1

a1

)i

+

(
1

a1

)m+1

yt+m+1 −
m∑
i=0

(
1

a1

)i+1

xt+i+1

= −a0
a1

−a1 + a−m
1

1− a1
+

(
1

a1

)m+1

yt+m+1 −
m∑
i=0

(
1

a1

)i+1

xt+i+1

(73)

As m approaches infinity, this ”forward-looking” solution converges (unless yt or xt grow very
fast):

yt =
a0

1− a1
−

∞∑
i=0

(
1

a1

)i+1

xt+i+1 (74)
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We may write this more compactly as follows:

yt = ã0 + ã1yt+1 + b̃xt+1

= ã0

m∑
i=0

ãi1 + ãm+1yt+m+1 + b̃
m∑
i=0

ãi1xt+i+1

=
ã0

1− ã1
+ b̃

∞∑
i=0

ãi1xt+i+1,

(75)

where

ã0 = −a0
a1

, ã1 =
1

a1
, b̃ = − 1

a1
.

An important drawback of iterative method is that the algebra becomes very complex in higher-
order equations.

2.4.6 The exchange rate as an asset price in the monetary model

In the monetary model with flexible prices, the current exchange rate, st, depends on the expec-
ted future exchange rate, set . Rational expectations imply that agents’ expectations coincide with
realized values of the exchange rate, that is, set = st+1. The equation determining today’s nominal
exchange rate then becomes:

st = ã1st+1 + b̃ft (76)

where

ã1 =
b

1 + b
, b̃ =

1

1 + b
, ft = −(mt −m∗

t ) + a(yt − y∗t ) + qt.

The solution to this difference equation is:

st = b̃
∞∑
i=0

ãi1ft+i. (77)

Today’s exchange rate thus depends, just like an asset price, on its current and future fundamentals.

2.5 Alternative solution methodology

Consider again the first-order linear difference equation (64):

yt = a0 + a1yt−1 + xt. (78)

Homogeneous part of equation (64):

yt − a1yt−1 = 0. (79)
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Homogeneous solution. A solution to equation (79) is called homogeneous solution, yht .

Particular solution. A solution to equation (64) is called particular solution, ypt .

General solution. The general solution to a difference equation is defined to be a particular
solution plus all homogeneous solutions:

yt = yht + ypt . (80)

In the case of equation (64):

yht = Aat1, (81)

where A is an arbitrary constant. Using this homogeneous solution, the homogeneous part of
equation (64) is satisfied:

Aat1 − a1Aa
t−1
1 = 0. (82)

We already found a particular solution to equation (64):

ypt =
a0

1− a1
+

∞∑
i=0

ai1xt−i for |a1| < 1. (83)

Therefore the general solution is:

yt = yht + ypt

= Aat1 +
a0

1− a1
+

∞∑
i=0

ai1xt−i.
(84)

When initial conditions are given, the arbitrary constant A can be eliminated.

Solution methodology:

Step 1. Find all n homogeneous solutions.

Step 2. Find a particular solution.

Step 3. Obtain general solution (= sum of particular solution and linear combination of all ho-
mogeneous solutions).

Step 4. Eliminate arbitrary constants by imposing initial conditions.
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2.5.1 Example: Second-order difference equation

Consider the following second-order difference equation (n = 2):

yt = 0.9︸︷︷︸
a1

yt−1 − 0.2︸︷︷︸
a2

yt−2 + 3︸︷︷︸
a0

. (85)

Homogeneous part:

yt − 0.9yt−1 + 0.2yt−2 = 0 (86)

Step 1. There are two homogeneous solutions (check!):

yh1t = 0.5t,

yh2t = 0.4t.
(87)

Step 2. There is for example the following particular solution (check!):

ypt = 10. (88)

Step 3. Now we form the general solution:

yt = A10.5
t + A20.4

t + 10. (89)

Step 4. Suppose there are the following initial conditions:

y0 = 13, y1 = 11.3 ⇔ A1 = 1, A2 = 2. (90)

The solution with initial conditions imposed is thus:

yt = 0.5t + 2× 0.4t + 10. (91)

Remaining problems:

• How do we find homogeneous solutions to a given difference equation?

• How do we find a particular solution to a given difference equation?
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2.6 Solving second-order homogeneous difference equations

2.6.1 Roots of the general quadratic equation

A quadratic equation of the form

ax2 + bx+ c = 0 (92)

has the following solution:

x1,2 =
−b±

√
b2 − 4ac

2a
=

−b±
√
d

2a
. (93)

When a = 1, the quadratic equation becomes:

x2 + bx+ c = 0 (94)

The above solution simplifies to:

x1,2 =
−b±

√
b2 − 4c

2
=

−b±
√
d

2
. (95)

Note that d is called the discriminant.

2.6.2 Homogeneous solutions

Consider the homogeneous part of a second-order linear difference equation:

yt − a1yt−1 − a2yt−2 = 0. (96)

We try yht = Aαt as a homogeneous solution:

Aαt − a1Aα
t−1 − a2Aα

t−2 = 0. (97)

Note that the choice of A is arbitrary. Now divide by Aαt−2:

α2 − a1α− a2 = 0. (98)

This equation is called the characteristic equation. The roots (= solutions) of this equation are
called characteristic roots.

The characteristic equation of the second-order linear difference equation has the following solu-
tions:

α1,2 =
a1 ±

√
a21 + 4a2
2

=
a1 ±

√
d

2
, (99)

where d (= a21 + 4a2) is the discriminant.
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We obtain the following solution for the homogeneous equation:

yht = A1α
t
1 + A2α

t
2. (100)

To see why this is the solution, just substitute equation (100) into equation (96):

A1α
t
1 + A2α

t
2 − a1

(
A1α

t−1
1 + A2α

t−1
2

)
− a2

(
A1α

t−2
1 + A2α

t−2
2

)
= 0 (101)

⇔ A1

(
αt
1 − a1α

t−1
1 − a2α

t−2
1

)
+ A2

(
αt
2 − a1α

t−1
2 − a2α

t−2
2

)
= 0 (102)

⇔ A1

(
α2
1 − a1α

1
1 − a2

)
+ A2

(
α2
2 − a1α

1
2 − a2

)
= 0. (103)

We call α1 and α2 the characteristic roots of equation (96) since they are the roots of the charac-
teristic equation (98).

Note that it is sometimes possible to guess the roots of the characteristic equation:

(α− α1)(α− α2) = 0 (104)
⇔ α2 − (α1 + α2)α + α1α2 = 0. (105)

Therefore the coefficients a1 and a2 are related to the characteristic roots α1 and α2 as follows:

a1 = α1 + α2,

a2 = −α1α2.
(106)

Consider for example the following equation:

α2 − 0.5α + 0.06 = 0. (107)

This equation has the roots

α1 = 0.2 and α2 = 0.3, (108)

since

a1 = 0.2 + 0.3 = 0.5,

a2 = −0.2× 0.3 = −0.06.
(109)

Depending on the value of d, we have to distinguish three cases:

Case where d > 0.

• The characteristic roots in this case are:

α1,2 =
a1 ±

√
d

2
. (110)

• The characteristic roots are real and distinct.

• The homogeneous solution is:

yht = A1α
t
1 + A2α

t
2. (111)

• yt is stable if |α1| < 1 and |α2| < 1.
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Case where d = 0.

• The characteristic roots in this case are:

α1 = α2 = α =
a1
2
. (112)

• The characteristic roots are real and equal.

• The homogeneous solution is:

yht = A1α
t + A2tα

t. (113)

• yt is stable if |α| < 1.

Case where d < 0.

• The characteristic roots in this case are:

α1,2 =
α1 ± i

√
d

2
. (114)

• The characteristic roots are imaginary and distinct.

• The homogeneous solution is:

yht = β1r
t cos(θt+ β2) (115)

where

β1,2 = arbitrary constants,

r =
√
−a2,

θ = arccos
(a1
2r

)
.

(116)

• yt is stable if r < 1.

2.6.3 Particular solutions

Let us now turn to the question of how to find a particular solution to a second-order linear differ-
ence equation:

yt − a1yt−1 − a2yt−2 = ct. (117)
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In a number of important cases, there are functions that are known to work as particular solutions.
Here are some examples:

ct = c ypt = A, (118a)
ct = ct+ d ypt = At+B, (118b)
ct = tn ypt = A0 + A1t+ . . .+ Ant

n, (118c)
ct = ct ypt = Act, (118d)
ct = α sin(ct) + β cos(ct) ypt = A sin(ct) + B cos(ct), (118e)

The constants can be determined by the method of undetermined coefficients:

• Substitute the solution (118) into equation (117).

• Determine the constant A and B in terms of the other constants.

3 Modelling currency flows using difference equations

See Müller-Plantenberg (2006). The basic idea is conveyed in figure 1.

Nominal
exchange
rateForeign exchange

market

Cash flow

Real exchange rateCurrent account

Debt balance

Balance of payments

(unobserved)

Figure 1: Cash flow and exchange rate determination. The internal behaviour of the balance of
payments determines how international payment flows evolve over time. The effect of those cross-border
cash flows on the foreign exchange market can result in important interactions between the balance of
payments and the nominal and real exchange rates.
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Figure 2: Large current account surpluses. Current account balances of countries with large current
account surpluses (in billions of US dollar). Countries are selected and ordered according to the highest
current account balance they have achieved in any single quarter in the period from 1977Q1 to 2001Q3.
Source: International Financial Statistics (IMF).

3.1 A benchmark model

The benchmark model consists of the following equations:

st = −ξct, (119)
qt = st, (120)
zt + ct = 0, (121)
zt = zt−1 − ϕqt−1, (122)

where

qt = real exchange rate,
st = nominal exchange rate,
zt = current account,
ct = monetary account (= minus country’s cash flow),

ϕ, ξ > 0.

Whereas the parameter ϕ measures the exchange rate sensitivity of trade flows, the parameter ξ
determines how the nominal exchange rate is affected by a country’s international cash flow, ct.

Transform model into first-order difference equation in the current account variable, zt:

zt = (1− ϕξ)zt−1.
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Figure 3: Japanese current account and counterfactual exchange rate. Japanese current account (left
scale, in trillions of yen, transformed from biannual to quarterly frequency using a natural cubic spline
smooth) and nominal effective exchange rate (right scale, in logarithms), period from 1968Q1 to 1999Q4.
The exchange rate is plotted along with counterfactual estimates during the periods 1980Q1–1981Q4 and
1984Q2–1986Q2 when measures to liberalize Japan’s capital account took effect, inducing capital inflows in
the early 1980s and capital outflows in the mid-1980s. The counterfactual series was calculated by removing
the exchange rate observations during the years of increased capital in- or outflows and filling the missing
values with the estimates from a natural cubic spline smooth based on all remaining observations. Source:
Economic Outlook (OECD), IFS (IMF), own calculations.

The solution to this equation is:

zt = A(1− ϕξ)t,

where A is an arbitrary constant.

Now the solution for st, qt and ct can be derived from the model’s equations.

We make the following observations:

• When ϕξ > 1, the current account and all the other variables in the model start to oscillate
from one period to the next.

• As soon as ϕξ > 2, the model’s dynamic behaviour becomes explosive.

• The current account, zt, and the real exchange rate, qt, are positively correlated.

3.2 A model with international debt

We have so far assumed that countries pay for their external transactions immediately.

8 January 2017 31



International Macroeconomics Modelling currency flows using difference equations

1980 1985 1990 1995 2000

−20

−10

0

10

20

30

Current account 
Debt securities balance 

Figure 4: Current account and lending in Japan. Japanese current account (left scale) and debt bal-
ance (right scale, with reversed sign), in billions of US dollar, period from 1977Q3 to 2002Q2. Source:
International Financial Statistics (IMF).

We shall now make the more realistic assumption that countries finance their external deficits by
borrowing from abroad. Specifically, they use debt with a one-period maturity to finance their
international transactions.

Another assumption we adopt is that debt flows are merely accommodating current account imbal-
ances, that is, we exclude independently fluctuating, autonomous capital flows from our analysis.

The previous model is modified as follows:

st = −ξct, (123)
qt = st, (124)
zt + dt + ct = 0, (125)
dt := d1t − d1t−1, (126)
ct = d1t−1, (127)
zt = zt−1 − ϕqt−1, (128)

where

dt := debt balance (part of financial account of the balance of payments),
d1t := flow of foreign debt with a one-period maturity, created in period t.

(129)

Observe that equations (125), (126) and (127) imply that countries pay for their imports and
receive payments for their exports always after one period:

ct = −zt−1. (130)
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Figure 5: Korea’s current account and exchange rate. South Korean current account, South Korean
real effective exchange rate and US-Korean bilateral exchange rate, period from 1980Q1 to 2003Q3. The
current account variable is measured as a percentage of world trade. Source: Economic Outlook (OECD)
and Main Economic Indicators (OECD).

Due to the deferred payments, adjustments now take longer than in the previous model. The model
can be reduced to a second-order difference equation in the current account variable, zt:

zt = zt−1 − ϕξzt−2. (131)

As long as ϕξ > 1
4
, the solution to this equation is the following trigonometric function:

zt = B1r
t cos(θt+B2), (132)

where

r :=
√
ϕξ,

θ := arccos

(
1

2
√
ϕξ

)
,

θϵ[0, π].

(133)

We make the following observations:

• As in the previous model, the variables move in a cyclical fashion. However, oscillating
behaviour occurs already when ϕξ > 1

4
(before, the condition was that ϕξ > 1).

• Whereas the frequency of the cycles, say ω, was one-half in the previous model—the vari-
ables were oscillating from one period to the next, completing one cycle in two periods—in
this model ω is strictly less than one-half.
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Figure 6: Japan’s share of world reserves. Japan’s share of total reserves of all countries, plotted
alongside the industrial countries’ share of worldwide reserves (monthly data, excluding gold reserves).
Source: International Financial Statistics (IMF).

• The present model becomes unstable as soon as ϕξ > 1. In the previous model, the corres-
ponding condition was that product of the parameters had to be greater than two, ϕξ > 2. In
other words, balance of payments and exchange rate fluctuations are potentially less stable
when countries borrow from, and lend to, each other. With international borrowing and lend-
ing, exchange rate adjustment is slower, implying that balance of payments imbalances can
grow larger.

• The correlation between the current account and the exchange rate is still positive; however,
the exchange rate now lags the movements of the current account.

Benchmark model Model with debt

Oscillating behaviour ϕξ > 1 ϕξ > 1
4

Frequency of cycles ω = 1
2

ω < 1
2

Explosive behaviour ϕξ > 2 ϕξ > 1

Correlation between z and s Corr(zt, st) = +1 Corr(zt, st+1) = +1

since z1 =
1
ξ
st since z1 =

1
ξ
st+1

Remarks:

• The period of the cycles in equation (132), p is:

p :=
2π

θ
. (134)
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• The frequency of the cycles in equation (132), ω, is:

ω :=
1

p
=

θ

2π
. (135)

• Since for there to be cycles in zt, 1
4
< ϕξ < ∞, we know that 0 < θ < π. From there we get

the result regarding the frequency of the cycles:

0 < ω <
1

2
. (136)
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Part IV

Differential equations

4 Introduction to differential equations

Instead of using difference equations, it is sometimes more convenient to study economic models
in continuous time using differential equations.

Definition:

• A differential equation is a mathematical equation for an unknown function of one or several
variables that relates the values of the function itself and of its derivatives of various orders.

5 First-order ordinary differential equations

We denote the first and second derivative of a variable x with respect to time t as follows:

ẋ :=
dx

dt
, ẍ :=

d2x

dt2
. (137)

What is a differential equation?

• In a differential equation, the unknown is a function, not a number.

• The equation includes one or more derivatives of the function.

The highest derivative of the function included in a differential equation is called its order.

Further, we distinguish ordinary and partial differential equations:

• An ordinary differential equation is one for which the unknown is a function of only one
variable. In our case, that variable will be time.

• Partial differential equations are equations where the unknown is a function of two or more
variables, and one or more of the partial derivatives of the function are included.
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5.1 Deriving the solution to a differential equation

Consider the first-order differential equation:

ẋ(t) = ax(t) + b(t), (138)

The function b(t) is called ”forcing function”.

We can derive a solution as follows:

ẋ(t)− ax(t) = b(t) (139)
⇔ ẋ(t)e−at − ax(t)e−at = b(t)e−at (140)

⇔ d

dt

[
x(t)e−at

]
= b(t)e−at. (141)

Note that the term e−at is called the ”integrating factor”. For t2 > t1, we obtain:

x(t2)e
−at2 − x(t1)e

−at1 =

∫ t2

t1

b(u)e−audu (142)

⇔ x(t2) = x(t1)e
a(t2−t1) +

∫ t2

t1

b(u)e−a(u−t2)du (143)

⇔ x(t1) = x(t2)e
−a(t2−t1) −

∫ t2

t1

b(u)e−a(u−t1)du. (144)

(145)

Case where a < 0. In this case, as t1 → −∞:

x(t2) →
∫ t2

−∞
b(u)ea(t2−u)du (146)

or x(t) →
∫ t

−∞
b(u)ea(t−u)du. (147)

Case where a > 0. In this case, as t2 → ∞:

x(t1) → −
∫ ∞

t1

b(u)e−a(u−t1)du (148)

or x(t) → −
∫ ∞

t

b(u)e−a(u−t)du. (149)

5.2 Applications

5.2.1 Inflation

Suppose that inflation increases whenever money growth falls short of current inflation:

π̇(t) = a (π(t)− µ(t)) , (150)
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where

π(t) = inflation,
µ(t) = money growth,

a > 0.

(151)

We can solve for π(t):

π̇(t) = aπ(t) + b(t), (152)

where

b(t) = −aµ(t). (153)

Then current inflation is determined by future money growth:

π(t) = −
∫ ∞

t

b(u)e−a(u−t)du

= a

∫ ∞

t

µ(u)e−a(u−t)du.

(154)

5.2.2 Price of dividend-paying asset

Consider the following condition which equalizes the returns on an interest-bearing and a dividend-
paying asset:

R =
π(t)

q(t)
+

q̇(t)

q(t)
(155)

⇔ q̇(t) = Rq(t)− π(t), (156)

where

R = interest rate (constant),
q(t) = price of dividend-paying asset,
π(t) = dividend.

(157)

The condition implies that the current price of the dividend-paying asset depends on the present
discounted value of all future dividends:

q(t) =

∫ ∞

t

π(u)e−R(u−t)du. (158)

5.2.3 Monetary model of exchange rate

Consider a continuous-time version of the monetary model of exchange rate determination:

m(t)− p(t) = ay(t)− bR(t), (159)
q(t) = p(t)− p∗(t) + s(t), (160)
R(t) = R∗(t)− ṡ(t). (161)
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The model can be rewritten in terms of an ordinary differential equation of the nominal exchange
rate variable (for simplicity without the time argument):

ṡ = R∗ −R

=
1

b
[(m−m∗)− (p− p∗)− a(y − y∗)]

=
1

b
[(m−m∗)− (q − s)− a(y − y∗)]

=
1

b
s+

1

b
[(m−m∗)− q − a(y − y∗)] .

(162)

Solving this differential equation, we see that the current exchange rate is forward-looking and
depends on its future economic fundamentals:

s(t) =
1

b

∫ ∞

t

[−(m−m∗) + q + a(y − y∗)] e−
1
b
(u−t)du. (163)

6 Currency crises

6.1 Domestic credit and reserves

Balance sheet of a central bank:

Assets Liablities

Bonds (D) Currency in circulation
Official reserves (RS) Bank deposits

M = Currency + Bank deposits
= RS +D

=
RS +D

D
×D

= eρD,

where

RS = official reserves,
D = domestic credit,
ρ = index of official reserves (≥ 0).

In logarithms:

m = ρ+ d.

The central bank creates money:
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• by buying domestic bonds (d ↑),

• by buying foreign reserves (ρ ↑).

The monetary model can therefore be modified as follows:

s = −(d− d∗)− (ρ− ρ∗) + a(y − y∗)− b(R−R∗) + q.

• Given the levels of the other variables, an increase in the domestic credit (purchase of do-
mestic bonds) as well as an increase in reserves (purchase of foreign currency and bonds)
induce a depreciation of the domestic currency (s ↓).

• However, it is also for instance possible to neutralize a domestic credit expansion by running
down foreign reserves, keeping the exchange rate constant.

The previous equation may also be written in terms of percentage changes:

∆s = −(∆d−∆d∗)− (∆ρ−∆ρ∗) + a(∆y −∆y∗)− b(∆R−∆R∗) + ∆q,

where ∆ is the difference operator (that is, ∆x = xt−xt−1), or in terms of instantaneous percentage
changes (derivatives of the logarithms with respect to time):

ṡ = −(ḋ− ḋ∗)− (ρ̇− ρ̇∗) + a(ẏ − ẏ∗)− b(Ṙ− Ṙ∗) + q̇.

6.2 A model of currency crises

The model we discuss is a simplified version of Flood and Garber (1984). See also Mark (2001,
chapter 11.1).

From the definition of the real exchange rate, it follows that the nominal exchange rate is determ-
ined as follows:

s(t) = −p(t) + p∗(t) + q(t). (164)

For simplicity, we assume that p∗(t) = 0. Another assumption, which we will relax later on
however, is that purchasing power parity holds so that q(t) = 0.

The money market is given by the following equation:

m(t)− p(t) = ay(t)− bR(t), (165)

where national income, y(t), is set to zero for simplicity.

Finally, we assume that uncovered interest parity holds:

R(t) = R(t)∗ − ṡ(t). (166)

We assume that R∗(t) = 0, again to make things simple.
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To sum up, the model consists of three simplified equations:

s(t) = −p(t), (167)
m(t)− p(t) = −bR(t), (168)
R(t) = −ṡ(t). (169)

In addition, we assume that the domestic credit component of the national money supply grows at
rate µ:

m(t) = ρ(t) + d(t), (170)
d(t) = d(0) + µt. (171)

6.2.1 Exchange rate dynamics before and after the crisis

Using the first three equations of the model, we can derive a first-order differential equation in s(t):

bṡ(t) = s(t) +m(t) (172)

⇔ ṡ(t) =
1

b
s(t) +

1

b
m(t). (173)

The solution to this differential equation is:

s(t) = −
∫ ∞

t

1

b
m(t)e−

1
b
(u−t)du. (174)

This integral may be further simplified using integration by parts. Note that integration by parts is
based on the following equation:∫ b

a

f(x)g′(x)dx =
∣∣∣b
a
f(x)g(x)−

∫ b

a

f ′(x)g(x)dx. (175)

In the case where f(x) = x and g′(x) = ex for instance, which is similar to ours, we obtain:∫ b

a

xexdx =
∣∣∣b
a
xex −

∫ b

a

exdx. (176)

As regards equation (174), we have to distinguish two cases:

• the time before the attack when m(t) = m(0) = d(0) + ρ(0),

• the time after the attack when m(t) = d(0) + µt.

In the first case, the exchange rate is constant:

s̄(t) = −
∫ ∞

t

1

b
m(0)e−

1
b
(u−t)du. (177)
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f(u) = −1

b
m(0), g′(u) = e−

1
b
(u−t), (178)

f ′(u) = 0, g(u) = −be−
1
b
(u−t). (179)

s̄(t) =

∣∣∣∣∣
∞

t

−1

b
m(0)×

(
−be−

1
b
(u−t)

)
= −m(0)

= −d(0)− ρ(0).

(180)

This is, of course, the expected result from equation (172) when the exchange rate is fixed.

In the second case, after the exchange rate has started floating, the constant expansion of the
domestic credit leads to a continued depreciation:

s̃(t) = −
∫ ∞

t

1

b
(d(0) + µu)e−

1
b
(u−t)du. (181)

f(u) = −1

b
(d(0) + µu), g′(u) = e−

1
b
(u−t), (182)

f ′(u) = −1

b
µ, g(u) = −be−

1
b
(u−t). (183)

s̃(t) =

∣∣∣∣∣
∞

t

−1

b
(d(0) + µu)×

(
−be−

1
b
(u−t)

)
−
∫ ∞

t

−1

b
µ×

(
−be−

1
b
(u−t)

)
du

= −d(0)− µt− µb.

(184)

6.2.2 Exhaustion of reserves in the absence of an attack

Time evolution of reserves:

ρ(t) = m(t)− d(t)

= m(0)− (d(0) + µt)

= ρ(0)− µt.

(185)

Time of exhaustion of reserves:

ρ(0)− µtT = 0 (186)

⇔ tT =
1

µ
ρ(0). (187)
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6.2.3 Anticipated speculative attack

Time of speculative attack:

s̄(tA) = s̃(tA) (188)
⇔ −d(0)− ρ(0) = −d(0)− µtA − µb (189)

⇔ tA =
1

µ
ρ(0)− b = tT − b. (190)

Reserves at the time of the speculative attack:

ρ(tA) = ρ(0)− µtA = ρ(0)− µ

(
1

µ
ρ(0)− b

)
= µb > 0. (191)

Intuition:

• At the time of the attack, tA, people change abruptly their expectations regarding the depre-
ciation of the exchange rate:

ṡ(t) = 0 → ṡ(t) < 0. (192)

• Uncovered interest parity implies a discrete rise in the interest rate and thus an immediate
fall of the money demand:

R ↑ . (193)

• A sudden rise in prices (p(t) ↑) would help to restore equilibrium in the money market but
would imply a discrete downward jump of the exchange rate (s(t) ↓), which is not possible
since speculators could make a riskless profit by selling the currency an instant before and
buying it an instant after the attack.

• The sudden fall in the money demand therefore has to be neutralized by a discrete reduction
of the nominal money supply, m(t); that is, the central bank is forced to sell its remaining
reserves in one final transaction:

ρ(t) ↓, m(t) ↓ . (194)

6.2.4 Fundamental causes of currency crises

In the model, we can distinguish between the short-term and the long-term causes of a currency
crisis:

• In the short term, a speculative attack on the domestic currency occurs because of the sudden
change in exchange rate expectations which force the central bank to sell all its remaining
reserves at once.
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• The long-term cause of the crisis lies in the continuous expansion of the domestic credit, d(t),
which oblige the central bank to run down its reserves to keep the money supply constant.

However, whereas the short-term cause of the speculative attack is a central feature of the model,
the long-term cause is not; domestic credit expansion merely represents an example of how a
currency crisis can come about in the long run.

To see why, let us look once more at how changes in the nominal exchange rate come about (leaving
aside the time argument of the functions for simplicity):

ṡ = −ṗ+ ṗ∗ + q̇

= −(ṁ− ṁ∗) + a(ẏ − ẏ∗)− b(Ṙ− Ṙ∗)− c+ ˙̄q

= −(ρ̇− ρ̇∗)− (ḋ− ḋ∗) + a(ẏ − ẏ∗)− b(Ṙ− Ṙ∗) + z + k + r + ˙̄q,

(195)

where

c = payments (”cash flow”) balance
(determining demand and supply in foreign exchange market),

z = current account,
k = capital flow balance,
r = changes in official reserves,
q̄ = residual exchange rate determinants

(neither value nor demand differences).

(196)

• Note that we have made use here of the balance of payments identity, z(t) + k(t) + c(t) +
r(t) = 0.

• Remember also that acquisitions of foreign assets enter the financial account of the balance
of payments as debit items with a negative sign; for instance, all of the following transactions
take a negative sign:

– the acquisition of foreign capital by domestic residents and the sale of domestic capital
by foreigners (k(t) < 0, ”capital outflows”),

– money inflows (c < 0) and

– purchases of foreign reserves by the central bank (r < 0).

In practice, there are two important long-term causes of currency crises:

Domestic credit expansion

• Continued domestic credit expansion (ḋ(t) > 0) leads to an increase in the domestic money
supply.

• To avoid excessive growth of the money supply, the central bank must sell reserves (ρ̇(t) <
0, r(t) > 0).
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• Ultimately, the selling of foreign reserves will result in a speculative attack and a collapse of
the exchange rate.

• The country could avoid a currency crisis by limiting the growth of its domestic credit.

Money outflows

• A persistent current account deficit or continued capital outflows (z(t) < 0, k(t) < 0) lead
to large payments to foreigners (c(t) > 0), which drive up the demand for foreign currencies
at the expense of the domestic currency.

• To stabilize the exchange rate, the central bank needs to sell its reserves (ρ̇(t) < 0, r(t) > 0).

• Ultimately, the selling of foreign reserves will result in a speculative attack and a collapse of
the exchange rate.

• Note that in this case, the depletion of reserves is not caused by growing domestic credit.
Reducing domestic credit (ḋ(t) < 0) will not be a useful remedy to avoid a currency crisis
since it is likely to produce a recession. (This is a lesson that was learned during the currency
crises of the 1990s, particularly the Asian crisis of 1997–1998.)

• Instead it is important to stabilize the current account (for instance through a controlled
depreciation, a so-called crawling peg) and to restrict capital outflows (for instance through
capital controls).

7 Systems of differential equations

7.1 Uncoupling of differential equations

Consider the system of differential equations:

ẋ(t) = A x(t) + b(t) .
n× 1 n× n n× 1 n× 1

(197)

Note that the system contains n interdependent equations so that our previous method of analysing
differential equations does not apply.

However, suppose that A is diagonalizable, that is:

A = PΛP−1 (198)

where

P = (p1,p2, . . . ,pn)n×n,

Λ = diag(λ1, λ2, . . . , λn)n×n,

pi = ith eigenvector of A,
λi = ith eigenvalue of A.

(199)
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We may now transform the original system of differential equations in (197) into a set of n inde-
pendent (orthogonal) equations as follows:

ẋ(t) = Ax(t) + b(t) (200)
⇔ ẋ(t) = PΛP−1x(t) + b(t) (201)
⇔ P−1ẋ(t) = ΛP−1x(t) +P−1b(t) (202)
⇔ ẋ∗(t) = Λx∗(t) + b∗(t) (203)

Our previous method of solving differential equations may now be applied to each of the n inde-
pendent equations. At any time, x(t) and b(t) may be recovered as follows:

x(t) = Px∗(t), b(t) = Pb∗(t). (204)

7.2 Dornbusch model

The Dornbusch model is presented in many textbooks, for example in Heijdra and van der Ploeg
(2002) and Obstfeld and Rogoff (1996).

7.2.1 The model’s equations

The Dornbusch model is based on the following relations:

y = −cR + dG− e(s+ p− p∗), (205)
m− p = ay − bR, (206)
R = R∗ − ṡ, (207)
ṗ = f(y − ȳ). (208)

• Endogenous variables: y, R, s, p.

• Exogenous variables: m, G, ȳ, p∗, R∗.

• Parameters (all positive): a, b, c, d, e, f.

7.2.2 Long-run characteristics

We may derive the long-run characteristics by setting ṡ = 0 and ṗ = 0:

• Monetary neutrality: p = m in the long run, and no effect of m on y or R.

• Unique equilibrium real exchange rate:

q = s+ p− p∗

=
1

e
(−ȳ − cR∗ + dG) .

(209)

Note that the equilibrium real exchange rate is not affected by monetary policy but that it can be
affected by fiscal policy.
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7.2.3 Short-run dynamics

To study the short-run dynamics implied by the model, let us reduce the model to a system of two
differential equations in s and p. Note first that for given values of the nominal exchange rate and
the domestic price level, the domestic output and interest rate can be written as:

y =
c(m− p) + bdG− be(s+ p− p∗)

b+ ac
,

R =
−(m− p) + adG− ae(s+ p− p∗)

b+ ac
.

(210)

ṡ = R∗ −R

= R∗ +
(m− p)− adG+ ae(s+ p− p∗)

b+ ac
,

ṗ = f(y − ȳ)

= f
c(m− p) + bdG− be(s+ p− p∗)

b+ ac
− fȳ.

(211)

[
ṡ

ṗ

]
=

[
ae

b+ac
ae−1
b+ac

− bef
b+ac

− cf+bef
b+ac

][
s

p

]
+

[
1

b+ac
−ad
b+ac

0 −ae
b+ac

1

cf
b+ac

bdf
b+ac

−f bef
b+ac

0

]
m
G
ȳ
p∗

R∗

 . (212)

We shall assume that ae < 1.

In a diagram with p on the horizontal and s on the vertical axis, the ṡ = 0 curve is upward-sloping
since ṡ = 0 implies:

s =
1− ae

ae
p+− 1

ae
m+

d

e
G+ p∗ − b+ ac

ae
R∗. (213)

On the other hand, the ṗ = 0 curve is downward-sloping since ṗ = 0 implies:

s = −c+ be

be
p+

c

be
m+

d

e
G− b+ ac

be
ȳ + p∗. (214)

We may now analyse the model in a phase diagram with s on the vertical and p on the horizontal
axis.

In doing so, we assume that:

• the exchange rate, s, is a jump variable that moves instantaneously towards any level required
to achieve equilibrium in the long run and that
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• the price level, p, is a crawl variable that moves continuously without abrupt jumps.

We are interested to answer the following questions:

• Is the system saddle-path stable?

(The condition for the model to be saddle-path stable is that |A| < 0 and is here fulfilled.)

• How is the adjustment towards the equilibrium?

• How does the equilibrium and the adjustment towards the equilibrium change if there is a
change in one or several of the exogenous variables.

8 Laplace transforms

The main purpose of Laplace transforms is the solution of differential equations and systems of
such equations, as well as corresponding initial value problems.

Useful introductions to Laplace transforms can be found in ? and Kreyszig (1999).

8.1 Definition of Laplace transforms

The Laplace F (s) = L{f(t)} of a function f(t) is defined by:

F (s) = L{f(t)} =

∫ ∞

0

f(t)e−stdt. (215)

It is important to note that the original function f depends on t and that its transform, the new
function F , depends on s.

The original function f(t) is called the inverse transform, or inverse, of F (s) and we write:

f(t) = L−1(F ). (216)

To avoid confusion, it is useful to denote original functions by lowercase letters and their trans-
forms by the same letters in capitals:

f(t) → F (s), g(t) → G(s), etc. (217)
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8.2 Standard Laplace transforms

f(t) F(s) = L{f(t)}

1 1
s

t 1
s2

t2 2!
s3

tn n!
sn+1

tn−1

(n−1)!
1
sn

eat 1
s−a

f(t) F(s) = L{f(t)}

sin(at) a
s2+a2

cos(at) s
s2+a2

sinh(at) a
s2−a2

cosh(at) s
s2−a2

u(t− c) e−cs

s

δ(t− a) e−as

Of course, these tables can also be used to find inverse transforms.

8.3 Properties of Laplace transforms

8.3.1 Linearity of the Laplace transform

The Laplace transform is a linear transform:

L{af(t) + bg(t)} = aL{f(t)}+ bL{g(t)}. (218)

8.3.2 First shift theorem

The first shift theorem states that if L{f(t)} = F (s) then:

L{e−atf(t)} = F (s+ a). (219)

8.3.3 Multiplying and dividing by t

If L{f(t)} = F (s), then

L{tf(t)} = −F ′(s). (220)

If L{f(t)} = F (s), then

L

{
f(t)

t

}
=

∫ ∞

s

F (σ)dσ, (221)

provided limt→0

{
f(t)
t

}
exists.
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8.3.4 Laplace transforms of the derivatives of f(t)

The Laplace transforms of the derivatives of f(t) are as follows:

L{f ′(t)} = sL{f(t)} − f(0),

L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0),

L{f ′′′(t)} = s3L{f(t)} − s2f(0)− sf ′(0)− f ′′(0).

(222)

It is convenient to adopt a more compact notation here, letting x := f(t) and x̄ := L{x}:

L{x} = x̄,

L{ẋ} = sx̄− x(0),

L{ẍ} = s2x̄− sx(0)− ẋ(0),

L{...
x} = s3x̄− s2x(0)− sẋ(0)− ẍ(0),

L{....
x } = s4x̄− s3x(0)− s2ẋ(0)− sẍ(0)− ...

x(0).

(223)

8.3.5 Second shift theorem

The second shift theorem states that if L{f(t)} = F (s) then:

L{u(t− c)f(t− c)} = e−csF (s), (224)
L−1{e−csF (s)} = u(t− c)f(t− c). (225)

This theorem turns out to be useful in finding inverse transforms.

8.4 Solution of differential equations

8.4.1 Solving differential equations using Laplace transforms

Many differential equations can be solved using Laplace transforms as follows:

• Rewrite the differential equation in terms of Laplace transforms.

• Insert the given initial conditions.

• Rearrange the equation algebraically to give the transform of the solution.

• Express the transform in standard form by partial fractions.

• Determine the inverse transforms to obtain the particular solution.
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8.4.2 First-order differential equations

First-order differential equation:

ẋ(t) = 2x(t) = 4, (226)

where

x(0) = 1. (227)

Solution:

• Laplace transforms:

(sx̄− x(0))− 2x̄ =
4

s
. (228)

• Initial condition:

sx̄− 1− 2x̄ =
4

s
. (229)

• Solve for x̄:

x̄ =
s+ 4

s(s− 2)
. (230)

• Partial fractions:

x̄ =
3

s− 2
− 2

s
. (231)

• Inverse transforms:

x(t) = 3e2t − 2. (232)

8.4.3 Second-order differential equations

Second-order differential equation:

ẍ(t)− 3ẋ(t) + 2x(t) = 2e3t, (233)

where

x(0) = 5,

ẋ(0) = 7.
(234)

Solution:
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• Laplace transforms:(
s2x̄− sx(0)− ẋ(0)

)
− 3(sx̄− x(0)) + 2x̄ =

2

s− 3
. (235)

• Initial conditions:(
s2x̄− 5s− 7

)
− 3(sx̄− 5) + 2x̄ =

2

s− 3
. (236)

• Solve for x̄:

x̄ =
5s2 − 23s+ 26

(s− 1)(s− 2)(s− 3)
(237)

• Partial fractions:

x̄ =
4

s− 1
+

1

s− 3
. (238)

• Inverse transforms:

x(t) = 4et + e3t. (239)

8.4.4 Systems of differential equations

Systems of differential equations:

ẏ(t)− x(t) = et, (240)
ẋ(t) + y(t) = e−t, (241)

where

x(0) = y(0) = 0. (242)

Solution:

• Laplace transforms:

(sȳ − y(0))− x̄ =
1

s− 1
, (243)

(sx̄− x(0)) + ȳ =
1

s+ 1
. (244)

• Initial conditions:

sȳ − x̄ =
1

s− 1
, (245)

sx̄+ ȳ =
1

s+ 1
. (246)
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• Solve for x̄:

x̄ =
s2 − 2s− 1

(s− 1)(s+ 1)(s2 + 1)
. (247)

• Partial fractions:

x̄ =
1

2

1

s− 1
− 1

2

1

s+ 1
+

s+ 1

s2 + 1
. (248)

• Inverse transforms:

x(t) = −1

2
et − 1

2
e−t + cos t+ sin t. (249)

• Obtain y(t) from y(t) = −ẋ(t) + e−t:

y(t) =
1

2
et +

1

2
e−t − cos t+ sin t. (250)

9 Solving the model of section 6.2 using Laplace transforms

Let us use the Laplace transform method to solve once again the currency crisis model of sec-
tion 6.2.

Recall the differential equation (172), which describes the nominal exchange rate’s dynamics be-
fore and after the attack:

ṡ(t) =
1

b
s(t) +

1

b
m(t). (251)

Let us consider the case where the exchange rate has already started to float after being attacked,
so that m(t) = d(0) + µt. To avoid confusion with the parameter s of the Laplace transform, we
use the function x(t) rather than s(t) to denote the exchange rate. Then we have:

ẋ(t) =
1

b
x(t) +

1

b
(d(0) + µt). (252)

Here is how we can solve the differential equation for s(t) using Laplace transforms:

sx̄− x(0) =
1

b
x̄+

1

b

(
d(0)

s
+

µ

s2

)
(253)

⇔ x̄ =
bx(0)s2 + d(0)s+ µ

s2(sb− 1)
. (254)

Now we take partial fractions:

x̄ =
−d(0)− µb

s
− µ

s2
+

x(0) + d(0) + µb

s− 1
b

. (255)

Taking the inverse Laplace transforms of the resulting terms, we obtain:

x(t) = −d(0)− µb− µt+ (x(0) + d(0) + µb) e
1
b
t. (256)

We see that there are infinitely many solutions, depending on the choice of the initial condition.
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• If we choose x(0) = −d(0)−µb as the initial condition, we obtain the linear solution already
encountered in equation (184).

• However, with any other initial condition, the exchange rate will diverge exponentially from
the linear trend given by −d(0)− µb− µt.

10 A model of currency flows in continuous time

10.1 The model’s equations

We now consider model of currency flows and exchange rate movements in continuous time. The
model consists of the following equations:

ṡ(t) = −ξc(t), (257)
q(t) = s(t), (258)
ż(t) = −ϕq(t), (259)
c(t) = −z(t). (260)

10.2 Solving the model as a system of differential equations

Let us write the model a little more compactly:

q̇(t) = ξz(t), (261)
ż(t) = −ϕq(t). (262)

Solution using Laplace transforms:

• Laplace transforms:

(sq̄ − q(0)) = ξz̄,

(sz̄ − z(0)) = −ϕq̄.
(263)

• Solve for z̄:

z̄ =
sz(0)− ϕq(0)

s2 + ξϕ
. (264)

• Inverse transforms:

z(t) = z(0) cos
(√

ξϕ t
)
−

ϕq(0) sin
(√

ξϕ t
)

√
ξϕ

(265)

• Obtain q(t) from ż(t) = −ϕq(t):

q(t) =
1

ϕ
ż(t)

=
1

ϕ

[
−
√
ξϕ z(0) sin

(√
ξϕ t
)
− ϕq(0) cos

(√
ξϕ t
)] (266)
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10.3 Solving the model as a second-order differential equation

Note that the model can also be expressed in terms of a second-order differential equation in z(t):

z̈(t) + ξϕz(t) = 0. (267)

Solving this equation should obviously lead to the same final solution:

• Laplace transforms:(
(s2z̄ − sz(0)− ż(0)

)
+ ξϕz̄ = 0. (268)

• Solve for z̄:

z̄ =
sz(0) + ż(0)

s2 + ξϕ
. (269)

• Inverse transforms:

z(t) = z(0) cos
(√

ξϕ t
)
+

ż(0) sin
(√

ξϕ t
)

√
ξϕ

(270)

• Obtain q(t) from ż(t) = −ϕq(t):

q(t) =
1

ϕ
ż(t)

=
1

ϕ

[
−
√
ξϕ z(0) sin

(√
ξϕ t
)
+ ż(0) cos

(√
ξϕ t
)] (271)

In this model,

• the cyclical fluctuations come about since current account imbalances immediately produce
offsetting payment flows,

• which push the exchange rate either up or down (depending on whether the current account
is in surplus or in deficit).

Any current account imbalance thus carries with it the seed of its own reversal.

Now compare the model’s prediction with the swings in Japan’s and Germany’s current account
and exchange rate data plotted in figures 7 and 8.
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Figure 7: Japanese current account and counterfactual exchange rate. Japanese current account (left
scale, in trillions of yen, transformed from biannual to quarterly frequency using a natural cubic spline
smooth) and nominal effective exchange rate (right scale, in logarithms), period from 1968Q1 to 1999Q4.
The exchange rate is plotted along with counterfactual estimates during the periods 1980Q1–1981Q4 and
1984Q2–1986Q2 when measures to liberalize Japan’s capital account took effect, inducing capital inflows in
the early 1980s and capital outflows in the mid-1980s. The counterfactual series was calculated by removing
the exchange rate observations during the years of increased capital in- or outflows and filling the missing
values with the estimates from a natural cubic spline smooth based on all remaining observations. Source:
Economic Outlook (OECD), IFS (IMF), own calculations.

Part V

Intertemporal optimization

11 Methods of intertemporal optimization

• Ordinary maximization

• Calculus of variations

• Optimal control

• Dynamic programming

12 Intertemporal approach to the current account

See Obstfeld and Rogoff (1995, 1996).
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Figure 8: German current account and nominal exchange rate in the 1980s. German current account
(left scale, in German mark) and nominal effective exchange rate (right scale, in logarithms), period from
1977Q1 to 1990Q4. Source: International Financial Statistics (IMF).

12.1 Current account

Current account balance of a country:

• exports minus imports of goods and services (elasticities approach), rents on labour and
capital, unilateral transfers;

• increase in residents’ claims on foreign incomes or outputs less increase in similar foreign-
owned claims on home income or output;

• national saving less domestic investment (absorption approach, intertemporal approach).

The intertemporal approach views the current account balance as the outcome of forward-looking
dynamic saving and investment decisions.

12.2 A one-good model with representative national residents

Consider a small open economy that produces and consumes a single composite good and trades
freely with the rest of the world.

The current account, CAt, is equal to the accumulation of net foreign assets and to the saving-
investment balance:

CAt = Bt+1 −Bt = rtBt + Yt − Ct −Gt − It, (272)
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where

Bt+1 := stock of net foreign assets at the end of period t,

rt := interest rate,
Yt := domestic output,
Ct := private consumption,
Gt := government consumption,
It := net investment.

(273)

13 Ordinary maximization by taking derivatives

13.1 Two-period model of international borrowing and lending

Utility:

U1 = u(C1) + βu(C2). (274)

Intertemporal budget constraint:

Y1 + (1 + r)B1 = C1 +B2, (275)
Y2 + (1 + r)B2 = C2 +B3. (276)

Current account:

CA1 = S1 = B2 −B1 = Y1 + rB1 − C1, (277)
CA2 = S2 = B3 −B2 = Y2 + rB2 − C2. (278)

Combining the intertemporal budget constraints yields:

Y1 +
1

1 + r
Y2 + (1 + r)B1 = C1 +

1

1 + r
C2 +

1

1 + r
B3 (279)

⇔ C2 = (1 + r)Y1 + Y2 + (1 + r)2B1 − (1 + r)C1 −B3 (280)

⇔ C1 = Y1 +
1

1 + r
Y2 + (1 + r)B1 −

1

1 + r
C2 −

1

1 + r
B3. (281)

Maximization problem:

max
C1

= u(C1) + βu((1 + r)Y1 + Y2 + (1 + r)2B1 − (1 + r)C1 −B3) (282)

First-order condition:

u′(C1)− β(1 + r)u′(C2) = 0 ⇔ βu′(C2)

u′(C1)
=

1

1 + r
. (283)
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Maximization problem:

max
C2

= u

(
Y1 +

1

1 + r
Y2 + (1 + r)B1 −

1

1 + r
C2 −

1

1 + r
B3

)
+ βu(C2) (284)

First-order condition:

− 1

1 + r
u′(C1)− βu′(C2) = 0 ⇔ βu′(C2)

u′(C1)
=

1

1 + r
. (285)

Maximization problem:

max
B2

= u(Y1 + (1 + r)B1 −B2) + βu(Y2 + (1 + r)B2 −B3) (286)

First-order condition:

−u′(C1) + β(1 + r)u′(C2) = 0 ⇔ βu′(C2)

u′(C1)
=

1

1 + r
. (287)

Let B1 = B3 = 0. Let u(·) = log(·). Then:

C1 =
1

β(1 + r)
C2 =

1

1 + β

(
Y1 +

1

1 + r
Y2

)
, (288)

C2 =
β

1 + β
((1 + r)Y1 + Y2) . (289)

Current accounts:

CA1 = B2 −B1 =
β

1 + β
Y1 −

1

(1 + β)(1 + r)
Y2, (290)

CA2 = B3 −B2 = − β

1 + β
Y1 +

1

(1 + β)(1 + r)
Y2. (291)

13.2 Digression on utility functions

13.2.1 Logarithmic utility.

Logarithmic utility is given by:

u(C) = log(C),

u′(C) =
1

C
> 0,

u′′(C) = − 1

C2
< 0,

γ̄(C) = −u′′(C)

u′(C)
=

1

C
,

γ(C) = −
du′(C)
u′(C)

dC
C

= −Cu′′(C)

u′(C)
= 1,

σ(C) =
1

γ(C)
= −

dC
C

du′(C)
u′(C)

= − u′(C)

Cu′′(C)
= 1,

(292)
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where

• γ̄(C) is the absolute risk aversion, or the reciprocal of the so-called risk tolerance,

• γ(C) is the relative risk aversion, or consumption elasticity of marginal utility, and

• σ(C) is the elasticity of intertemporal substitution.

13.2.2 Isoelastic utility.

The class of period utility functions characterized by a constant elasticity of intertemporal substi-
tution is:

u(C) =
C1− 1

σ

1− 1
σ

, σ > 0,

u′(C) = C− 1
σ > 0,

u′′(C) = − 1

σ
C− 1

σ
−1 < 0,

γ̄(C) = −u′′(C)

u′(C)
=

1

σC
,

γ(C) = −Cu′′(C)

u′(C)
=

1

σ
= γ = const.

σ(C) =
1

γ(C)
= σ = const.

(293)

For σ = 1, the isoelastic utility function is replaced by its limit, log(C).

13.2.3 Linear-quadratic utility.

Linear-quadratic utility is given by:

u(C) = −(b− C)2

2
,

u′(C) = b− C, u′(C) ≥ 0 if C ≤ b,

u′′(C) = −1 < 0,

γ̄(C) = −u′′(C)

u′(C)
=

1

b− C
,

γ(C) = −Cu′′(C)

u′(C)
=

C

b− C
,

σ(C) =
1

γ(C)
=

b

C
− 1.

(294)
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13.2.4 Exponential utility.

Exponential utility is given by:

u(C) = −be−
C
b , b > 0,

u′(C) = e−
C
b > 0,

u′′(C) = −1

b
e−

C
b < 0,

γ̄(C) = −u′′(C)

u′(C)
=

1

b
= const.,

γ(C) = −Cu′′(C)

u′(C)
=

C

b
,

σ(C) =
1

γ(C)
=

b

C
.

(295)

13.2.5 The HARA class of utility functions

A HARA utility function, u(C), is one whose absolute risk aversion is hyperbolic:

γ̄ = −u′′(C)

u′(C)
=

1

aC + b
> 0, (296)

for some constants a and b. Since the inverse of absolute risk aversion is risk tolerance, a HARA
utility function exhibits linear risk tolerance:

1

γ̄
= − u′(C)

u′′(C)
= aC + b > 0. (297)

The relative risk aversion of a HARA utility function is given by:

γ(C) = −Cu′′(C)

u′(C)
=

C

aC + b
=

1

a
− b

a2C + ab
. (298)

For a utility function of the HARA class:

• risk tolerance (the reciprocal of absolute risk aversion) is a linearly increasing function of a
and is constant if a = 0;

• relative risk aversion is rising with b and is constant if b = 0.

It can be shown that all the utility functions mentioned above belong to the HARA family:

Utility function a b

Logarithmic > 0 = 0
Isoelastic > 0 = 0
Linear-quadratic < 0 > 0
Exponential = 0 > 0
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13.3 Two-period model with investment

Production function:

Y = F (K). (299)

As usual, F ′(K) > 0, F ′′(K) < 0 and F (0) = 0.

Utility:

U1 = u(C1) + βu(C2). (300)

Intertemporal budget constraint, where It = Kt+1 −Kt:

Y1 + (1 + r)B1 +K1 = C1 +B2 +K2, (301)
Y2 + (1 + r)B2 +K2 = C2 +B3 +K3. (302)

Current account:

CA1 = S1 − I1 = B2 −B1 = Y1 + rB1 − C1 − I1, (303)
CA2 = S2 − I2 = B3 −B2 = Y2 + rB2 − C2 − I2. (304)

Combining the intertemporal budget constraints yields:

Y1 +
1

1 + r
Y2 + (1 + r)B1 +K1 = C1 +

1

1 + r
C2 +

1

1 + r
B3 +

1

1 + r
K3 (305)

⇔ C2 = (1 + r)Y1 + Y2 + (1 + r)2B1 + (1 + r)K1 − (1 + r)C1 −B3 −K3 (306)

⇔ C1 = Y1 +
1

1 + r
Y2 + (1 + r)B1 −

1

1 + r
C2 −

1

1 + r
B3 −

1

1 + r
K3. (307)

Maximization problem:

max
B2,K2

= u(F (K1) + (1 + r)B1 +K1 −B2 −K2)

+ βu(F (K2) + (1 + r)B2 +K2 − B3 −K3) (308)

First-order conditions:

−u′(C1) + β(1 + r)u′(C2) = 0 ⇔ βu′(C2)

u′(C1)
=

1

1 + r
, (309)

−u′(C1) + β(1 + F ′(K2))u
′(C2) = 0. ⇔ βu′(C2)

u′(C1)
=

1

1 + F ′(K2)
. (310)

(311)

Therefore returns on capital and foreign assets must be equal:

F ′(K2) = r. (312)

Let B1 = B3 = 0. Let u(·) = log(·). Then:

C1 =
1

β(1 + r)
C2 =

1

1 + β

(
Y1 +

1

1 + r
Y2

)
, (313)

C2 =
β

1 + β
((1 + r)Y1 + Y2) . (314)
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13.4 An infinite-horizon model

Utility at time t:

Ut =
∞∑
s=t

βs−tu(Cs). (315)

Intertemporal budget constraint:

AsF (Ks) + (1 + r)Bs +Ks = Cs +Bs+1 +Ks+1 +Gs (316)

The infinite-horizon budget constraint is:
∞∑
s=t

(
1

1 + r

)s−t

Ys + (1 + r)Bt =
∞∑
s=t

(
1

1 + r

)s−t

(Cs + Is +Gs). (317)

Here it is assumed that the transversality condition holds:

lim
T→∞

(
1

1 + r

)T

Bt+T+1 = 0. (318)

Maximization problem:

max
Bs+1,Ks+1

∞∑
s=t

βs−tu[AsF (Ks) + (1 + r)Bs +Ks −Bs+1 −Ks+1 −Gs] (319)

First-order conditions:

−u′(Cs) + β(1 + r)u′(Cs+1) = 0 (320)

⇔ βu′(Cs+1)

u′(Cs)
=

1

1 + r
, (321)

−u′(Cs) + β(1 + As+1F
′(Ks+1))u

′(Cs+1) = 0 (322)

⇔ βu′(Cs+1)

u′(Cs)
=

1

1 + As+1F ′(Ks+1)
. (323)

Therefore returns on capital and foreign assets must be equal:

As+1F
′(Ks+1) = r. (324)

Note that when β = 1/(1 + r), optimal consumption is constant:

Ct =
r

1 + r

[
(1 + r)Bt +

∞∑
s=t

(
1

1 + r

)s−t

(Ys −Gs − Is)

]
. (325)

If the period utility function is isoelastic, the Euler equation (320) takes the form

Cs+1 = (1 + r)σβσCs. (326)
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We can use it to eliminate Ct+1, Ct+2, etc. from budget constraint (317). Under the assumption that
(1 + r)σ−1βσ < 1, so that consumption grows a a net rate below r, the result is the consumption
function

Ct =
(1 + r)Bt +

∑∞
s=t

(
1

1+r

)s−t
(Ys − Is −Gs)∑∞

s=t[(1 + r)σ−1βσ]s−t
. (327)

Defining θ ≡ 1− (1 + r)σβσ, we rewrite this as:

Ct =
r + θ

1 + r

[
(1 + r)Bt +

∞∑
s=t

(
1

1 + r

)s−t

(Ys − Is −Gs)

]
. (328)

Given r, consumption is a decreasing function of β.

13.5 Dynamics of the current account

See Obstfeld and Rogoff (1996, section 2.2).

For a constant interest rate r, define the permanent level of a variable X on date t by:

∞∑
s=t

(
1

1 + r

)s−t

X̃t =
∞∑
s=t

(
1

1 + r

)s−t

Xs, (329)

so that

X̃t =
r

1 + r

∞∑
s=t

(
1

1 + r

)s−t

Xs. (330)

The permanent level of X , X̃ , is its annuity value at the prevailing interest rate.

Using (325), we obtain:

CAt = Bt+1 −Bt

= Yt + rBt − Ct − It −Gt

= (Yt − Ỹt)− (It − Ĩt)− (Gt − G̃t).

(331)

When β ̸= 1/(1 + r) and utility is isoelastic,

CAt = (Yt − Ỹt)− (It − Ĩt)− (Gt − G̃t)−
θ

1 + r
Wt, (332)

where

Wt = (1 + r)Bt +
∞∑
s=t

(
1

1 + r

)s−t

(Ys − Is −Gs) (333)

and θ = 1− (1 + r)σβσ.
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13.6 A model with consumer durables

See Obstfeld and Rogoff (1996, section 2.4).

Let Cs be consumption of nondurables and Ds be the stock of durable goods the consumer owns
as date s ends. A stock of durables yields its owner a proportional service flow each period it is
owned. Let p be the price of durable goods in terms of nondurable consumption (determined in the
world market).

Utility function

Ut =
∞∑
s=t

βs−t[γ logCs + (1− γ) logDs] (334)

Period-to-period budget constraint:

F (Ks) + (1 + rs)Bs +Ks + ps(1− δ)Ds−1 = Cs +Bs+1 +Ks+1 + psDs +Gs, (335)

where ps[Ds − (1− δ)Ds−1] is the cost of durable goods purchases in period s.

Maximization problem:

max
Bs+1,Ks+1,Ds

∞∑
s=t

βs−t[γ logCs + (1− γ) logDs], (336)

where Cs = F (Ks)− [Bs+1 − (1 + rs)Bs]− (Ks+1 −Ks)− ps[Ds − (1− δ)Ds−1]−Gs.

First-order conditions:

− 1

Cs

+ β(1 + rs)
1

Cs+1

= 0, (337)

− 1

Cs

+ β(1 + F ′(Ks+1)
1

Cs+1

= 0, (338)

1− γ

Ds

− γps
Cs

+
βγps+1(1− δ)

Cs+1

= 0. (339)

Rewrite these equations:

rs = F ′(Ks+1), (340)
Cs+1 = β(1 + rs)Cs, (341)
(1− γ)Cs

γDs

= ps −
1− δ

1 + rs+1

ps+1 ≡ ιs. (342)

Here, ι is the implicit date s rental price, or user cost, of the durable good, that is, the net expense
of buying the durable in one period, using it in the same period, and selling it in the next. Equa-
tion (342) states that, at an optimum, the marginal rate of substitution of nondurables consumption
for the services of durables equals the user cost of durables in terms of nondurables consumption.
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Intertemporal budget constraint (with constant r):

∞∑
s=t

(
1

1 + r

)s−t

(Cs + ιsDs) =

(1 + r)Bt + (1 − δ)ptDt−1 +
∞∑
s=t

(
1

1 + r

)s−t

(Ys − Gs − Is). (343)

This constraint states that the present value of expenditures (the sum of nondurables purchases plus
the implicit rental cost of the durables held) equals initial financial assets (including durables) plus
the present value of net output.

Assuming that β = 1/(1 + r) (so that nondurables and durables consumption is constant):

Ct =
γr

1 + r

[
(1 + r)Bt + (1− δ)ptDt−1 +

∞∑
s=t

(
1

1 + r

)s−t

(Ys −Gs − Is)

]
(344)

Dt =
(1− γ)r

ι(1 + r)

[
(1 + r)Bt + (1− δ)ptDt−1 +

∞∑
s=t

(
1

1 + r

)s−t

(Ys −Gs − Is)

]
(345)

How do durables affect the current account? With p constant:

p =

(
1 + r

1 + δ

)(
1− γ

γ

)
Cs

Ds

, s ≥ t. (346)

Let Z = Y −G− I . Then:

CAt = Bt+1 −Bt = rBt + Zt −
Ct

γ
− (1− γ)Ct

γ
− p[Dt − (1− δ)Dt−1]

=

[
Zt −

r

1 + r

∞∑
s=t

(
1

1 + r

)s−t

Zs

]

− 1− δ

1 + r
pDt−1 +

(1− γ)Ct

γ
− pDt + (1− δ)pDt−1

= (Yt − Ỹt)− (It − Ĩt)− (Gt − G̃t) + (ι− p)∆Dt.

(347)

13.7 Firms, the labour market and investment

See Obstfeld and Rogoff (1996, section 2.5.1).

The production function (homogeneous to degree one) is AF (K,L), where L is constant. We can
think of output as being produced by a single representative domestic firm that behaves compet-
itively and is owned entirely by domestic residents. Vt is the date t price of a claim to the firm’s
entire future profits (starting on date t + 1). Let xs+1 be the share of the domestic firm owned by
the representative consumer at the end of date s and ds the dividends the firm issues on date s.
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13.7.1 The consumer’s problem.

Utility function:

Ut =
∞∑
s=t

u(Cs). (348)

Period-to-period financial constraint:

Bs+1 −Bs + Vsxs+1 − Vs−1xs = rBs + dsxs + (Vs − Vs−1)xs + wsL− Cs −Gs. (349)

Maximization problem:

max
Bs+1,xs+1

∞∑
s=t

u[(1 + r)Bs −Bs+1 − Vs(xs+1 − xs) + dsxs + wsL−Gs]. (350)

First-order conditions:

u′(Cs) = (1 + r)βu′(Cs+1), (351)
Vsu

′(Cs) = (Vs+1 + ds+1)βu
′(Cs+1). (352)

From this, we see that returns on foreign bonds and shares must be equal:

1 + r =
ds+1 + Vs+1

Vs

(353)

A useful reformulation of the individual’s budget constraint uses the variable Qs+1, which is the
value of the individual’s financial wealth at the end of period s:

Qs+1 = Bs+1 + Vsxs+1. (354)

The period-to-period financial constraint becomes:

Qs+1 −Qs = rQs + wsL− Cs −Gs, s = t+ 1, t+ 2, . . . , (355)
Qt+1 = (1 + r)Bt + dtxt + Vtxt + wtL− Ct −Gt. (356)

By forward iteration, we obtain:

∞∑
s=t

(
1

1 + r

)s−t

Cs = (1 + r)Bt + dtxt + Vtxt +
∞∑
s=t

(
r

1 + r

)s−t

(wsL−Gs). (357)

Here it is supposed that the following transversality condition holds:

lim
T→∞

(
1

1 + r

)T

Qt+T+1 = 0. (358)
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13.7.2 The stock market value of the firm.

Note that equation (353) implies:

Vt =
dt+1

1 + r
+

Vt + 1

1 + r

=
∞∑
t+1

(
1

1 + r

)s−t

ds.
(359)

We rule out self-fulfilling speculative asset-price bubbles:

lim
T→∞

(
1

1 + r

)T

Vt+T = 0. (360)

13.7.3 Firm behaviour.

The dividends a firm pays out in a period are its current profits less investment expenditure, that is,
ds = Ys − wsLs − Is. The value of the firm can therefore be written as follows:

Vt =
∞∑

s=t+1

(
1

1 + r

)s−t

[AsF (Ks, Ls)− wsLs − (Ks+1 −Ks)]. (361)

The firm maximizes the present value of current and future dividends, given Kt:

dt + Vt =
∞∑
s=t

(
1

1 + r

)s−t

[AsF (Ks, Ls)− wsLs − (Ks+1 −Ks)]. (362)

First-order conditions for capital and labour:

AsFK(Ks, Ls) = r, s > t, (363)
AsFL(Ks, Ls) = ws, s ≥ t. (364)

Note that the consumer’s problem is the same is the same as in an economy without a firm, where
the consumer is itself the producer. This is so since the Euler equation and budget constraints are
identical, provided the equilibrium conditions xs = 1 and Ls = L hold on all dates s. To see this,
combine equations (361) and (351).

13.8 Investment when capital is costly to install: Tobin’s q

See Obstfeld and Rogoff (1996, section 2.5.2).

There are now quadratic installation costs for investment. The firm maximizes, for a given Kt:

dt + Vt =
∞∑
s=t

(
1

1 + r

)s−t [
AsF (Ks, Ls)−

χ

2

I2s
Ks

− wsLs − Is

]
, (365)
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subject to

Ks+1 −Ks = Is. (366)

Lagrangian, to differentiate with respect to labour, investment and capital:

Lt =
∞∑
s=t

(
1

1 + r

)s−t [
AsF (Ks, Ls)−

χ

2

I2s
Ks

− wsLs − Is − qs(Ks+1 −Ks − Is)

]
.

(367)

First-order conditions:

AsFL(Ks, Ls)− w = 0, (368)

−χIs
Ks

− 1 + qs = 0, (369)

−qs +
As+1FK(Ks+1, Ls+1) +

χ
2
(Is+1/Ks+1)

2 + qs+1

1 + r
= 0. (370)
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Part VI

Dynamic optimization in continuous time

14 Optimal control theory

14.1 Deriving the fundamental results using an economic example

A firm wishes to maximize its total profits over some period of time starting at date t = 0 and
ending at date T :

W (k0,x) =

∫ T

0

u(k, x, t)dt

The variable kt is the capital stock at date t, the initial capital stock k0 is given to the firm. The
variable xt is chosen by the firm at every instant. The function u(kt, xt, t) determines the rate at
which profits are being earned at time t as a result of having capital k and taking decisions x.
The integral W (·) sums up the profits that are being earned at all the instants from the initial date
until date T , when starting with a capital stock k0 and following the decision policy x. Note that
x denotes a time path for the decision variable x, it comprises all the decisions taken at all the
instants between date zero and T .

Changes in the capital stock are governed by the following equation:

k̇ =
dk

dt
= f(k, x, t)

Note that the decisions x influence not only contemporaneous profits but also the rate at which the
capital stock is changing and thereby the amount of capital available in the future. As we will see,
this gives rise to a potential tradeoff.

The problem is how to choose the time path x so as to maximize the overall result, W . Difficult
to solve, since it involves optimization in a dynamic context. Ordinary calculus only tells us how
to choose individual variables to solve an optimization problem. How to solve the problem then?
Reduce the problem to one to which ordinary calculus can be applied.

Consider the problem when starting at date t:

W (kt,x, t) =

∫ T

t

u(kτ , xτ , τ)dτ

= u(kt, xt, t)∆ +

∫ T

t+∆

u(kτ , xτ , τ)dτ

= u(kt, xt, t)∆ +W (kt+∆,x, t+∆)

where ∆ is a very short time interval. This says that the value contributed to the total sum of profits
from date t on is made up of two parts. The first part consists of the profits accrued in the short
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time interval beginning at date t. The second part is the sum of all the profits earned from date
t+∆.

Let V ∗(kt, t) denote the best achievable value for W when starting at date t with a capital stock kt:

V ∗(kt, t) ≡ max
x

W (kt,x, t)

Suppose the firm chooses xt (any decision, not necessarily the optimal one) for the short, initial
time interval ∆ and thereafter follows the best possible policy. Then this would yield:

V (kt, xt, t) = u(kt, xt, t)∆ + V ∗(kt+∆, t+∆) (371)

Now the whole problem reduces to finding the optimal value for xt. Adopting this value would
make V in the last equation become equal to V ∗. The first-order condition is:

∆
∂

∂xt

u(k, xt, t) +
∂

∂xt

V ∗(kt+∆, t+∆)

= ∆
∂

∂xt

u(k, xt, t) +
∂V ∗

∂kt+∆

∂kt+∆

∂xt

(372)

= 0

Consider the second factor of the second term. Since ∆ is small,

kt+∆ = kt + k̇∆

Remember that k̇, the rate at which the capital stock changes, depends on the decision variable, xt:

k̇ = f(k, x, t)

We obtain:

∂kt+∆

∂xt

= ∆
∂f

∂xt

What is the meaning of the first factor, ∂V ∗/∂k? It is the marginal value of capital at date t + ∆,
telling us how the maximal value of W changes in response to a unit increase in the capital stock
at date t+∆. Let it be denoted by λt:

λt ≡
∂

∂k
V ∗(k, t)

λt will sometimes be referred to as the co-state variable whereas kt is the state variable.

The first-order condition in equation (372) now becomes:

∂u

∂xt

+ λt+∆
∂f

∂xt

=
∂u

∂xt

+ λt
∂f

∂xt

+ λ̇t∆
∂f

∂xt

= 0
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Here use has been made of the fact that the marginal value of capital changes smoothly over time
so that λt+∆ = λt + λ̇∆.

Now let ∆ approach zero. The third term becomes negligible, and we obtain the following import-
ant result:

∂u

∂xt

+ λ
∂f

∂xt

= 0 (373)

It says that along the optimal path, the marginal short-run effect of a change in the decision variable
must just offset the long-run effect of that change on the total value of the capital stock.

Suppose the optimal value for xt has been determined by equation (373) and let it be denoted by
x∗
t . When this decision is chosen, V (kt, xt, t) in equation (371) becomes equal to V ∗(kt, t):

V ∗(k, t) = u(k, x∗
t , t)∆ + V ∗(kt+∆, t+∆)

Let us differentiate this with respect to k:

λt = ∆
∂u

∂k
+

∂

∂k
V ∗(kt+∆, t+∆)

= ∆
∂u

∂k
+

∂kt +∆

∂k
λt+∆

= ∆
∂u

∂k
+

(
1 + ∆

∂f

∂k

)
(λ+ λ̇∆)

= ∆
∂u

∂k
+ λ+∆λ

∂f

∂k
+∆λ̇+ λ̇

∂f

∂k
∆2

The final term in the last line becomes negligible when ∆ approaches zero; thus we ignore it. After
rearranging, we have another important result:

−λ̇ =
∂u

∂k
+ λ

∂f

∂k
(374)

This means that when the optimal path of capital accumulation is followed, the rate at which a
unit of capital depreciates in a short time interval must be equal to both its contribution to profits
during the interval and its contribution to potential profits in the future, that is, after the end of the
interval.

14.2 The Maximum Principle

The two results in equations (373) and (374), as well as the requirement that dotk = f(k, x, t)
which is part of the problem setting, are conveniently summarized with the aid of an auxiliary
function, the so-called Hamiltonian function:

H ≡ u(k, x, t) + λtf(k, x, t)
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All three formulas can be expressed in terms of partial derivatives of the Hamiltonian:

∂H

∂λ
= k̇ (375)

∂H

∂x
= 0 (376)

∂H

∂k
= −λ̇ (377)

These three formulas jointly determine the time path of the decision, or choice, variable xt, the
capital stock kt and the value of capital λt.

Why the name Maximum Principle? This can be seen by interpreting the Hamiltonian itself, but
the same conclusions can be derived by looking at a slightly modified Hamiltonian:

H∗ ≡ u(k, x, t) +
d

dt
λk

= u(k, x, t) + λk̇ + λ̇k

H∗ can be interpreted as the sum of profits realized during a given instant of time and the change
in the value of the capital stock (resulting both from quantity and valuation changes) during that
instant. In other words, it summarizes all current and potential future profits. This is what we want
to maximize throughout the period considered, from the initial date to date T . But if we maximize
H∗ with respect to x and k, we just obtain equations (373) and (374). The modified Hamiltonian
H∗ differs from H in that it includes capital gains. But this is just a matter of definition. When we
use H instead of H∗, the relevant formulas are those in equations (375) to (377).

For boundary conditions, see Chiang (1992). Second-order conditions haven’t been mentioned but
should in principle also be checked.

14.3 Standard formulas

In economics, the optimal control problem often takes the following form. The objective function
is given by:

W (k0) =

∫ t

0

u(kt, xt, t)e
−ρtdt

where e−ρt is the discount factor and k0, the initial value of the state variable, is a given as part of
the problem. The state equation is given by k̇ = f(kt, ut, t).

The Hamiltonian for such a problem is:

H ≡ u(kt, xt, t)e
−ρt + λtf(kt, xt, t)
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The Maximum Principle demands that the following equations hold for t ϵ [0,∞]:

∂H

∂λ
= k̇

∂H

∂x
= 0

∂H

∂k
= −λ̇

An equally valid method is to use the current-value Hamiltonian, defined as:

HC ≡ He−ρt = u(kt, xt, t) + µtf(kt, xt, t)

where we work with a redefined co-state variable µ ≡ λte
ρt. The first-order conditions now

become:

∂H

∂µ
= k̇

∂H

∂x
= 0

∂H

∂k
= −µ̇+ ρµ

14.4 Literature

A good introduction to optimal control theory is Chiang (1992). Sydsæter, Strøm and Berck (2000)
provide a collection of useful formulas. The derivations above summarize Dorfman’s (1969) article
which gives an economic interpretation to the Maximum Principle.

15 Continuous-time stochastic processes

15.1 Wiener process

A Wiener process is a real-valued continuous-time stochastic process ω(t) with the following prop-
erties:

• The time path followed by ω(t) is continuous.

• The increments of ω(t) over infinitesimal time intervals dt are normally distributed with
mean zero and variance dt:

dω ∼ N(0, dt). (378)

This may also be written as:

dω ∼
√
dt εt, (379)

where εt ∼ N(0, 1).
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• The increments of ω(t) over non-overlapping time intervals are independent.

Note that a Wiener process, although continuous, is not differentiable in general.

15.2 Ito process

An Ito process s(t) is a real-valued continuous-time stochastic process with stochastic differential

ds = g(s, t)dt+ σ(s, t)dω, (380)

where ω is a Wiener process.

We shall call g the drift of the Ito process and σ its volatility.

Note:

• The time path followed by s(t) is continuous.

• The increments of s(t) over infinitesimal time intervals dt are normally distributed with
mean g(s, t)dt and variance σ2(s, t)dt:

ds ∼ N(g(s, t)dt, σ2(s, t)dt). (381)

• The increments of s(t) over non-overlapping time intervals are independent.

15.2.1 Absolute Brownian motion

Absolute Brownian motion is an Ito process s(t) defined by the following stochastic differential
equation:

ds = µdt+ ζdω. (382)

15.2.2 Geometric Brownian motion

Geometric Brownian motion (often used to model asset prices) is an Ito process s(t) defined by
the following stochastic differential equation:

ds

s
= µdt+ ζdω ⇔ ds = µsdt+ ζsdω. (383)

15.2.3 Ito calculus

When working with Ito processes, the basic product rules of Ito calculus prove useful:

dt2 ≈ 0 (since dt2 ≪ dt as dt → 0), (384)
dtdω ≈ 0 (since dtdω ≪ dt as dt → 0), (385)
dω2 = Var(dω) = dt. (386)
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15.3 Ito’s lemma

Consider a stochastic process y(s(t), t), where s(t) is an Ito process and y is twice continuously
differentiable. Ito’s lemma asserts that y(s(t), t) is also an Ito process with stochastic differential

dy =

(
yt + gys +

1

2
σ2yss

)
dt+ σysdω, (387)

where yt, ys and yss are the partial derivatives of y evaluated at (s, t) and g and σ are the drift and
volatility of s(t) evaluated at (s, t).

To see the intuition behind Ito’s lemma, consider the Taylor series expansion of dy around (s, t):

dy = ytdt+ ysds+
1

2

(
yttdt

2 + 2ystdsdt+ yssds
2
)
+ . . .

= ytdt+ ys(gdt+ σdω) +
1

2
yssσ

2dt.
(388)

where use is made of the fact that dt2, dsdt and all terms of order three and above are zero and that
ds2 = σ2dt.

15.4 Examples of Ito’s lemma

15.4.1 Exponential function

Let s(t) be an absolute Brownian motion:

ds = µdt+ ζdω. (389)

Now consider the exponential function of s(t):

y(s) = es, y′(s) = es, y′′(s) = es. (390)

Hence:

dy =

(
y′(s)µ+

1

2
y′′(s)ζ2

)
dt+ y′(s)ζdω

=

(
esµ+

1

2
esζ2

)
dt+ esζdω

=

(
µ+

1

2
ζ2
)
ydt+ ζydω.

(391)

Ito’s lemma can thus be used to show that the exponential function of an absolute Brownian motion
with drift µ and volatility ζ is a geometric Brownian motion with drift (µ + ζ2/2)y and volatility
ζy.
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15.4.2 Logarithm of a geometric Brownian motion process

Let s(t) be a geometric Brownian motion process:

ds = µsdt+ ζsdω. (392)

Now consider the logarithm of s(t):

y(s) = ln(s), y′(s) =
1

s
, y′(s) = − 1

s2
. (393)

Hence:

dy =

(
y′(s)µs+

1

2
y′′(s)ζ2s2

)
dt+ y′(s)ζsdω

=

(
1

s
µs− 1

2

1

s2
ζ2s2

)
dt+

1

s
ζsdω

=

(
µ− ζ2

2

)
dt+ ζdω.

(394)

Ito’s lemma can thus be used to show that the logarithm of a geometric Brownian motion with drift
µs and volatility ζs is an absolute Brownian motion with drift µ− ζ2/2 and volatility ζ .

Integrating both sides of equation (394), we have:

ln(st)− ln(s0) =

∫ t

0

(
µ− ζ2

2

)
dτ +

∫ t

0

ζdω

=

(
µ− ζ2

2

)
t+ ζωt.

(395)

By taking exponentials on both sides of equation (395) and rearranging, we obtain a closed-form
solution to the stochastic differential to the geometric Brownian motion process in equation (392):

st = s0e

(
µ− ζ2

2

)
t+ζωt

= s0e

(
µ− ζ2

2

)
t
eζωt . (396)

15.4.3 Power function

Let s(t) be a geometric Brownian motion:

ds = µsdt+ ζsdω. (397)

Now consider the power function of s(t):

y(s) = Asβ, y′(s) = Aβsβ−1, y′′(s) = Aβ(β − 1)sβ−2. (398)
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Hence:

dy =

(
µsy′(s) +

1

2
ζ2s2y′′(s)

)
dt+ ζsy′(s)dω

=

(
µsAβsβ−1 +

1

2
ζ2s2Aβ(β − 1)sβ−2

)
dt+ ζsAβsβ−1dω

=

(
βµAsβ +

1

2
β(β − 1)ζ2Asβ

)
dt+ βζAsβdω

=

(
βµ+

1

2
β(β − 1)ζ2

)
ydt+ βζydω.

(399)

Ito’s lemma can thus be used to show that the power function of a geometric Brownian motion
with drift µs and volatility ζs is a geometric Brownian motion with drift (βµ + β(β − 1)ζ2/2)y
and volatility βζy.

15.4.4 Substraction of a constant

Let s(t) be a geometric Brownian motion:

ds = µsdt+ ζsdω, s > 0. (400)

One may interpret s(t) as the present discounted value (PDV) of an investment project and I as
the cost of installation of the project. Now consider the function y(s) representing the PDV of the
project net of its installation cost:

y(s) = s− I, y′(s) = 1, y′(s) = 0. (401)

Ito’s lemma yields:

dy =

(
y′(s)µs+

1

2
y′′(s)ζ2s2

)
dt+ y′(s)ζsdω

= µsdt+ ζsdω

= µ(y + I)dt+ ζ(y + I)dω.

(402)

Hence:

dy

y
=

(
µ+

µI

y

)
dt+

(
ζ +

ζI

y

)
dω. (403)

16 Continuous-time dynamic programming

References: Chang (2004).
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16.1 Digression on the number e and the return on an asset in an infinites-
imally small period

The number e is defined as:

e = lim
n→∞

(
1 +

1

n

)n

= lim
n→∞

(
1 +

100%

n

)n

.

(404)

The number e can thus be interpreted as the compound return on an asset that earns an interest of
100% per period and is continually reinvested during one period.

This definition can be used to express eρt as follows:

eρt =

[
lim
n→∞

(
1 +

1

n

)n]ρt
=

[
lim
n→∞

(
1 +

1

n

)nρ]t
=

[
lim

n′→∞

(
1 +

ρ

n′

)n′]t (405)

where n′ = nρ and use is made of the power rule for limits. The term eρt can thus be interpreted as
the compound return on an asset that earns an interest of ρ per period an is continually reinvested
during t periods.

It is intuitive that the net return on an asset that earns an interest of ρ during an infinitesimally small
period is the same whether or not the asset is continually reinvested. Indeed, using L’Hôpital’s rule,
one can show this as follows:

lim
dt→0

eρdt − 1

dt
= lim

dt→0

ρeρdt

1
= ρ. (406)

16.2 Optimization with one state variable and one control variable and dis-
counted rewards (model class 1)

16.2.1 Optimization problem

The optimization problem is as follows:

• At each instant of time, an agent observes the state variable s, takes an action x and receives
an instantaneous reward f(s, x), which is discounted by a discount factor ρ.

• The state is governed by the following stochastic differential:

ds = g(s, x)dt+ σ(s)dω. (407)
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• The agent’s optimization problem may be stated as follows:

max
x

E

(∫ ∞

0

e−ρtf(s, x)dt

)
, (408)

such that

ds = g(s, x)dt+ σ(s)dω. (409)

• The agent seeks an optimal policy x = x(s), which stipulates what action should be taken in
state s so as to maximize the expected stream of rewards over time.

16.2.2 Bellman equation

Let V (s) be the value function, that is, the maximum expected stream of rewards over time, given
the state s.

According to Bellman’s principle of optimality, the value function must satisfy:

V (s) = max
x

(
f(s, x)dt+ e−ρdt E(V (s+ ds))

)
(410)

Multiplying through with eρdt/dt and subtracting V (s)/dt yields:

eρdt − 1

dt
V (s) = max

x

{
eρdtf(s, x) + E

(
V (s+ ds)− V (s)

dt

)}
. (411)

The Bellman equation is thus:

ρV (s) = max
x

{
f(s, x) + E

(
dV (s)

dt

)}
. (412)

Note that use has been made of the fact that, as shown in section 16.1, (eρdt − 1)/dt = ρ.

Ito’s lemma provides the stochastic differential of the value function V (s):

dV (s) =

(
g(s, x)Vs +

1

2
σ2(s)Vss

)
dt+ σ(s)Vsdω. (413)

Hence:

E

(
dV (s)

dt

)
= g(s, x)Vs +

1

2
σ2(s)Vss. (414)

Plugging equation (414) into equation (412), we obtain the Bellman equation in continuous time
for an optimization problem with one state variable and one control variable and discounted re-
wards:

ρV (s) = max
x

{
f(s, x) + g(s, x)Vs +

1

2
σ2(s)Vss

}
. (415)

To see the intuition of the Bellman equation stated above, think of V (s) as the value of a stream
of income generated by an optimally managed asset over time. The owner of the asset has two
options:
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• either sell the asset and invest the proceeds, obtaining a return ρV (s);

• or hold it, realizing a dividend f(s, x)dt and an expected capital appreciation E(dV (s)/dt).

Bellman’s equation states that the returns are equal in both cases and that arbitrage is impossible.

16.3 Optimization with n state variables and k control variables and dis-
counted rewards (model class 2)

16.3.1 Optimization problem

The optimization problem is as follows:

• At each instant of time, an agent observes the vector of state variables s = (s1, . . . , sn)
′,

takes actions summarized in the vector x = (x1, . . . , xk)
′ and receives an instantaneous

reward f(s, x), which is discounted by a discount factor ρ.

• The state variables are governed by the following stochastic differentials:

dsi = gi(s, x)dt+ σi(s)dωi, i = 1, . . . , n. (416)

• The agent’s optimization problem may be stated as follows:

max
x

E

(∫ ∞

0

e−ρtf(s, x)dt

)
, (417)

such that

dsi = gi(s, x)dt+ σi(s)dωi, i = 1, . . . , n. (418)

• The agent seeks an optimal policy x = x(s), which stipulates what actions should be taken
in state s so as to maximize the expected stream of rewards over time.

16.3.2 Bellman equation

Let V (s) be the value function, that is, the maximum expected stream of rewards over time, given
the state s.

According to Bellman’s principle of optimality, the value function must satisfy:

V (s) = max
x

{
f(s, x)dt+ e−ρdt E(V (s+ ds))

}
(419)

⇔ ρV (s) = max
x

{
f(s, x) + E

(
dV (s)

dt

)}
(as dt → 0). (420)
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Ito’s lemma provides the stochastic differential of the value function V (s):

dV (s) =

(
n∑

i=1

gi(s, x)Vsi +
1

2

n∑
i=1

n∑
j=1

σi(s)σj(s)ηijVsisj

)
dt+

n∑
i=1

σi(s)Vsidωi. (421)

Note that Ito’s lemma can be derived using a second-order Taylor approximation:

dV (s) =
n∑

i=1

Vsidsi +
1

2

n∑
i=1

n∑
j=1

Vsisjdsidsj, (422)

where

dsi = gi(s, x)dt+ σidωi, (423)

dsidsj =

{
σ2
i (s)dt if i = j,

σi(s)σj(s)ηijdt if i ̸= j.
(424)

Plugging equation (421) into equation (420), we obtain the Bellman equation in continuous time
for an optimization problem with n state variables and k control variables and discounted rewards:

ρV (s) = max
x

{
f(s, x) +

n∑
i=1

gi(s, x)Vsi +
1

2

n∑
i=1

n∑
j=1

σi(s)σj(s)ηijVsisj

}
. (425)

16.4 Optimization with one state variable and one control variable with un-
discounted rewards (model class 3)

16.4.1 Optimization problem

The optimization problem is as follows:

• At each instant of time, an agent observes the state variable s, takes an action x and receives
an instantaneous reward h(s, x).

• The state is governed by the following stochastic differential:

ds = g(s, x)dt+ σ(s)dω. (426)

• The agent’s optimization problem may be stated as follows:

max
x

E

(∫ ∞

0

h(s, x)dt

)
, (427)

such that

ds = g(s, x)dt+ σ(s)dω. (428)

• The agent seeks an optimal policy x = x(s), which stipulates what action should be taken in
state s so as to maximize the expected stream of rewards over time.

8 January 2017 82



International Macroeconomics Continuous-time dynamic programming

16.4.2 Bellman equation

Let V (s) be the value function, that is, the maximum expected stream of rewards over time, given
the state s.

According to Bellman’s principle of optimality, the value function must satisfy:

V (s) = max
x

{h(s, x)dt+ E(V (s+ ds))} . (429)

Ito’s lemma provides the stochastic differential of the value function V (s):

dV (s) =

(
g(s, x)Vs +

1

2
σ2(s)Vss

)
dt+ σ(s)Vsdω. (430)

Hence:

E(V (s+ ds)) = V (s) +

(
g(s, x)Vs +

1

2
σ2(s)Vss

)
dt. (431)

Plugging equation (431) into equation (429), we obtain the Bellman equation in continuous time
for an optimization problem with one state variable and one control variable:

V (s) = max
x

{
h(s, x)dt+ V (s) +

(
g(s, x)Vs +

1

2
σ2(s)Vss

)
dt

}
(432)

⇔ 0 = max
x

{
h(s, x) + g(s, x)Vs +

1

2
σ2(s)Vss

}
. (433)

16.5 Optimization with n state variables and k control variables with undis-
counted rewards (model class 4)

16.5.1 Optimization problem

The optimization problem is as follows:

• At each instant of time, an agent observes the vector of state variables s = (s1, . . . , sn)
′, takes

actions summarized in the vector x = (x1, . . . , xk) and receives an instantaneous reward
h(s, x).

• The state variables are governed by the following stochastic differentials:

dsi = gi(s, x)dt+ σi(s)dωi, i = 1, . . . , n. (434)

• The agent’s optimization problem may be stated as follows:

max
x

E

(∫ ∞

0

h(s, x)dt

)
, (435)

such that

dsi = gi(s, x)dt+ σi(s)dωi, i = 1, . . . , n. (436)

• The agent seeks an optimal policy x = x(s), which stipulates what actions should be taken
in state s so as to maximize the expected stream of rewards over time.
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16.5.2 Bellman equation

Let V (s) be the value function, that is, the maximum expected stream of rewards over time, given
the state s.

According to Bellman’s principle of optimality, the value function must satisfy:

V (s) = max
x

{h(s, x)dt+ E (V (s+ ds))} (as dt → 0). (437)

Ito’s lemma provides the stochastic differential of the value function V (s):

dV (s) =

(
n∑

i=1

gi(s, x)Vsi +
1

2

n∑
i=1

n∑
j=1

σi(s)σj(s)ηijVsisj

)
dt+

n∑
i=1

σi(s)Vsidωi. (438)

Hence:

E(V (s+ ds)) = V (s) +

(
n∑

i=1

gi(s, x)Vsi +
1

2

n∑
i=1

n∑
j=1

σi(s)σj(s)ηijVsisj

)
dt (439)

Plugging equation (439) into equation (437), we obtain the Bellman equation in continuous time
for an optimization problem with n state variables and k control variables and discounted rewards:

V (s) = max
x

{
h(s, x)dt+ V (s) +

(
n∑

i=1

gi(s, x)Vsi +
1

2

n∑
i=1

n∑
j=1

σi(s)σj(s)ηijVsisj

)
dt

}
(440)

⇔ 0 = max
x

{
h(s, x) +

n∑
i=1

gi(s, x)Vsi +
1

2

n∑
i=1

n∑
j=1

σi(s)σj(s)ηijVsisj

}
. (441)

17 Examples of continuous-time dynamic programming

17.1 Consumption choice

Maximization problem:

max
c1

E

(∫ ∞

0

e−ρtu(c1)dt

)
, (442)

where

da0 = (αa0 − c1)dt+ ζa0dω, (443)
u(c1) = ln(c1). (444)

8 January 2017 84



International Macroeconomics Examples of continuous-time dynamic programming

Note that wealth, a0, is the state variable and consumption, c1dt, the control variable.

Bellman equation:

ρV (a0) = max
c1

{
u(c1) + (αa0 − c1)V

′(a0) +
1

2
ζ2a20V

′′(a0)

}
. (445)

Suppose we multiply a0 and c1 through with ϕ. The law of motion would not change. The objective
function would become:

E

(∫ ∞

0

e−ρt ln(ϕc1)dt

)
= A ln(ϕ) + E

(∫ ∞

0

e−ρt ln(c1)dt

)
. (446)

Therefore:

V (ϕa0) = A ln(ϕ) + V (a0). (447)

Since ϕ can take any value, we can set ϕ = 1/a0:

V (1) = B = −A ln(a0) + V (a0) ⇔ V (a0) = A ln(a0) + B. (448)

So we know the form of the value function. Note the similarity of the function form of the utility
function and the value function. The first two derivatives of the value function are V ′(a0) = A/a0
and V ′′(a0) = −A/a20.

The first-order condition implies:

u′(c1) = V ′(a0), (449)

an intuitive result. It follows that c1 = a0/A.

The Bellman equation can now be written as:

ρ [A ln(a0) + B] = ln(a0)− ln(A) + αA− 1− 1

2
ζ2A. (450)

The parameters A and B can now be found by equating coefficients. Note that A = 1/ρ, so that
the agent consumes a constant fraction of wealth (consumption smoothing):

c1 = ρa0. (451)

17.2 Stochastic growth

Reference: Miranda.

Maximization problem:

max
c1

E

(∫ ∞

0

e−ρtu(c1)dt

)
, (452)
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where

dk0 = (yk0 − c1)dt, (453)
dy = (ay − b)dt+ ζ

√
ydω, (454)

u(c1) = ln(c1). (455)

There is only one good which is either consumed or invested. The production is given by yk0,
where y measures the productivity of capital, k0. Note that y evolves stochastically. The control
variable is consumption, c1.

The value function V (k0, y) depends on the two state variables, k0 and y. The Bellman equation
is:

ρV (k0, y) = max
c1

{
u(c1) + (yk0 − c1)Vk + (ay − b)Vy +

1

2
ζ2yVyy

}
. (456)

Let us guess that the value function takes the following form:

V (k0, y) = A ln(k0) + By + C. (457)

If we can find values for A, B and C that satisfy the Bellman equation, we can confirm that the
guess of the value function is correct.

From the first-order condition we can derive the optimal consumption rule (policy function):

u′(c1) = Vk ⇔ c1 =
1

A
k0. (458)

Substituting the value function and the policy function into the Bellman equation yields:

ρ(A ln(k0) + By + C) = ln(k0)− ln(A) + Ay − 1−B(ay − b). (459)

One can now find A, B and C by equating the coefficients of ln(k0) and y and solving the equation
consisting of the remaining terms. Note that A = 1/ρ, so that the agent consumes a constant
proportion of capital in the optimum:

c1 = ρk0. (460)

18 Portfolio diversification and a new rule for the current ac-
count

References: Kraay and Ventura (2000).

Remark. Note that from now on we use a subindex 0 (for example, z0) to indicate a stock vari-
able, a subindex 1 (for example, z1) to indicate its first time derivative and a subindex 2 to indicate
its second time derivative:

z1 =
dz0
dt

, z2 =
dz1
dt

. (461)

The notation implies that z1dt denotes the flow corresponding to the accumulated stock z0.

8 January 2017 86



International Macroeconomics Portfolio diversification and a new rule for the current account

18.1 The model

Assume there are three assets in which a representative consumer-investor can invest his wealth
a0:

• domestic capital, k0 = wa0,

• foreign capital, k∗
0 = w∗a0,

• foreign loans, a0 − k0 − k∗
0 = (1− w − w∗)a0.

The risk-free loans pay a constant interest rate, r. We assume that the risk and return properties of
capital can be represented by yield-less assets whose prices follow geometric Brownian motions:

dP = πPdt+ ζPdω, (462)
dP ∗ = π∗P ∗dt+ ζ∗P ∗dω∗, (463)

where ω and ω∗ are Wiener processes with increments that are normally distributed with E(dω) =
E(dω∗) = 0, E[(dω)2] = E[(dω∗)2] = dt and E[(dω)(dω∗)] = ηdt.

It can be shown that the consumer’s budget equation is:

a1dt = [(π − r)k0 + (π∗ − r)k∗
0 + ra0 − c1] dt+ k0ζdω + k∗

0ζ
∗dω∗. (464)

The consumer’s problem is:

max
c1,k0,k∗0

E

(∫ ∞

0

e−ρtu(c1)dt

)
, (465)

with initial wealth, a0,0, given.

The Bellman equation is:

ρV (a0) = max
c1,k0,k∗0

{
u(c1) + [πk0 + π∗k∗

0 + r(a0 − k0 − k∗
0)− c1]Va0

+

[
1

2
k2
0ζ

2 + k0k
∗
0ζζ

∗η +
1

2
(k∗

0)
2(ζ∗)2

]
Va0a0

} (466)

The optimal consumption and portfolio rules must satisfy the following first-order conditions:

u′(c1) = Va0 , (467)
(π − r)Va0 + [k0ζ

2 + k∗
0ζζ

∗η]Va0a0 = 0, (468)
(π∗ − r)Va0 + [k∗

0(ζ
∗)2 + k0ζζ

∗η]Va0a0 = 0. (469)

Equation (467) says that consumption is chosen in such a way that, in current values, the marginal
utility of consumption equals the marginal utility of wealth. Equations (468) and (469) determine
the optimal asset holdings:

k0 =
π − r

ζ2

(
− Va0

Va0a0

)
− ζζ∗η

ζ2
k∗
0, (470)

k∗
0 =

π∗ − r

(ζ∗)2

(
− Va0

Va0a0

)
− ζζ∗η

(ζ∗)2
k0. (471)
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For example, the absolute holding of the domestic asset depends on its excess return, the risk
tolerance (the reciprocal of absolute risk aversion) with respect to wealth and the need to diversify
the portfolio to achieve an optimal combination of return and risk. Hence we obtain:

k0 =
1

1− η2

[
π − r

ζ2
− ζζ∗η(π∗ − r)

ζ2(ζ∗)2

](
− Va0

Va0a0

)
, (472)

k∗
0 =

1

1− η2

[
π∗ − r

(ζ∗)2
− ζζ∗η(π − r)

ζ2(ζ∗)2

](
− Va0

Va0a0

)
. (473)

Equations (472) and (473) can also be solved for the excess returns:

π − r =
ζζ∗η

(ζ∗)2
(π∗ − r) + ζ2(1− η2)

(
−Va0a0

Va0

)
k0. (474)

Thus the domestic excess return depends on a term that is proportional to the product of the cor-
relation of domestic and foreign returns and foreign excess returns as well as on a term that is
proportional to the consumer’s risk aversion.

18.2 Solving the model

Then according to equations (467), (472) and (473), the control variables c1, k0 and k∗
0 are all

functions of Va0 and Va0a0 . As a consequence, the Bellman equation can be written as a (highly
nonlinear) second-order differential equation of the value function V (a0). Closed-form solutions
do not exist except in a few special cases to which we turn now.

Suppose we specify an explicit utility function, u(c1). Here are examples of utility functions that
permit explicit solutions of the Bellman equation:

u(c1) V (a0) Optimal c1 Optimal k0

− 1
γ
e−γc1 −A

γ
e−rγa0 ra0 − 1

γ
ln(rA) 1

1−η2

[
π−r
ζ2

− ζζ∗η(π∗−r)
ζ2(ζ∗)2

]
1
rγ

1
1−γ

c1−γ
1

A−γ

1−γ
a1−γ
0 Aa0

1
1−η2

[
π−r
ζ2

− ζζ∗η(π∗−r)
ζ2(ζ∗)2

]
a0
γ

ln(c1)
1
A
ln(a0) +B Aa0

1
1−η2

[
π−r
ζ2

− ζζ∗η(π∗−r)
ζ2(ζ∗)2

]
a0

The constants A and B can be found by plugging the optimal controls into the Bellman equations
and equating coefficients (see for instance Chang, 2004).

Note that for the exponential utility function with constant absolute risk aversion, it is the optimal
capital stock that is constant; for the isoelastic utility function with constant relative risk aversion
(and the logarithmic one, which is a special case), it is the optimal share of capital in wealth that
is constant. This observation provides some intuition for the terms ”absolute” and ”relative” risk
aversion.
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Let’s look at the solution of the Bellman equation for the logarithmic utility function u(c1) =
ln(c1). We have:

V (a0) =
1

A
ln(a0) +B, Va0 =

1

Aa0
, Va0a0 = − 1

Aa20
, (475)

c1 = Aa0, (476)

k0 =
1

1− η2

[
π − r

ζ2
− ζζ∗η(π∗ − r)

ζ2(ζ∗)2

]
a0, (477)

k∗
0 =

1

1− η2

[
π∗ − r

(ζ∗)2
− ζζ∗η(π − r)

ζ2(ζ∗)2

]
a0. (478)

The implicit function theorem states, loosely speaking, that if we have an equation F (x, y) = c
that defines y implicitly as a function of x, y = f(x), then we obtain the derivative of y as follows:

dy

dx
= −F1(x, y)

F2(x, y)
, (479)

where Fi(x, y) denotes the partial derivative of F (x, y) with respect to its ith argument.

We can use the implicit function theorem to determine how k depends on a. Let’s rewrite equa-
tion (477) as follows:

F (a0, k0(a0)) =
k0
a0

=
1

1− η2

[
π − r

ζ2
− ζζ∗η(π∗ − r)

ζ2(ζ∗)2

]
. (480)

Then it follows from the implicit function theorem that:

dk0
da0

= −F ′
1(a0, k0)

F ′
2(a0, k0)

= −
−k0

a2

1
a0

=
k0
a0

. (481)

Similarly we obtain:

dk∗
0

da0
=

k∗
0

a0
. (482)

We can thus conclude that the marginal unit of wealth is invested in just the same manner as the
average one and that increases in wealth do not affect the composition of the country’s portfolio.

Remark. The result that a0, k0 and k∗
0 move in proportion is rather trivial and it might not seem

necessary to apply the implicit function theorem to equations (477) and (478) to arrive at it. How-
ever, the implicit function theorem proves useful for modifications of the model.

18.3 Saving, investment and the current account

Let’s now study the behaviour of the current account. Recall that the current account is by defini-
tion equal to domestic saving minus domestic investment, z1dt = da0 − dk0, or to the net rise in
foreign assets (here comprising foreign capital and foreign loans).
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Suppose that due to a positive productivity shock, dω > 0, saving da0 rises. According to the tra-
ditional intertemporal approach to the current account studied in section 13, the additional saving
is entirely invested abroad. The current account improves therefore by the same amount as da0
since dk0 = 0.

By contrast, the new rule for the current account proposed by Kraay and Ventura (2000) holds
that the portfolio composition is maintained when saving increases and that part of the additional
saving is invested at home. This leaves us with two possibilities

• If a country is a creditor country so that a0 − k0 > 0, or k0/a0 < 1, the country reacts to a
positive productivity shock by running current account surplus:

z1dt = da0 − dk0 = dω − k0
a0

dω > 0, (483)

where z1dt is the current account.

• If, on the other hand, the country is a debtor country so that a0 − k0 < 0, or k0/a0 > 1, the
country reacts to a positive productivity shock by running a current account deficit:

z1dt = da0 − dk0 = dω − k0
a0

dω < 0. (484)

18.4 Limitations

There are two important problems of the new rule to the current account.

• A positive income shock is modelled as a large positive value of dω. If the income shock
is to be sustained during a longer period, say several years, dω would have to be positive
during a considerable time, an event whose probability tends to zero. In reality, countries
experiencing economic booms often experience a rise of their return on capital relative to that
in other countries. If this happens, however, it implies that investors shift their portfolios
towards countries with high returns on capital, implying that those countries tend to run
current account deficits.

• The other problem is that the new rule models physical investment using a model of finan-
cial investment. However, real investment is different from financial investment. Although
both types of activities involve uncertainty, financial investment is reversible whereas real
investment is not since it is normally associated with large sunk costs. To take account of
this difference, it would be desirable to model the dynamics of aggregate real investment
based on the principles of real options theory (Pindyck, 1991).

19 Investment based on real option theory

References: Dixit and Pindyck (1994), Miranda and Fackler (2002).
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19.1 Digression on Euler’s second-order differential equation

A differential equation of the following form is called Euler’s differential equation:

s2y′′(s) + asy′(s) + by = 0. (485)

Here we will only consider a second-order Euler differential equation.

Let s = et, or t = ln(s). Then:

dy

ds
=

dy

dt

dt

ds
=

1

s

dy

dt
, (486)

d2y

ds2
=

d

ds

dy

ds

=
d

ds

(
1

s

dy

dt

)
= − 1

s2
dy

dt
+

1

s

d2y

dt2
dt

ds

= − 1

s2
dy

dt
+

1

s2
d2y

dt2
.

(487)

To sum up, we have found the following:

y′(s) =
1

s
y′(t), y′′(s) = − 1

s2
y′(t) +

1

s2
y′′(t). (488)

Substituting the derivatives of y(s) into Euler’s differential equation yields:

s2
(
− 1

s2
y′(t) +

1

s2
y′′(t)

)
+ as

1

s
y′(t) + by = 0 (489)

⇔ y′′(t) + (a− 1)y′(t) + by = 0. (490)

This is an ordinary second-order differential equation with constant coefficients.

If (a− 1)2 > 4b, then:

y(s) = A1e
r1t(s) + A2e

r2t(s)

= A1e
r1 ln(s) + A2e

r2 ln(s)

= A1s
r1 + A2s

r2 ,

(491)

where

r1,2 =
−(a− 1)±

√
(a− 1)2 − 4b

2
. (492)

The non-homogeneous equation is:

s2y′′(s) + asy′(s) + by = cs+ d. (493)
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Consider now the following particular solution:

y(s) = K1 +K2s, y′(s) = K2, y′′(s) = 0. (494)

Substituting the function y(s) and its derivatives in the second-order Euler differential equation
yields:

asK2 + b(K1 +K2s) = cs+ d (495)

⇒ K1 =
d

b
, K2 =

c

a+ b
(496)

⇒ y(s) = K1 +K2s =
d

b
+

c

a+ b
s. (497)

Thus the general solution is:

y(s) = A1s
r1 + A2s

r2 +
d

b
+

c

a+ b
s. (498)

19.2 Digression on the present discounted value of a profit flow

Suppose a real asset produces a profit flow governed by the following differential equation:

dx = αxdt. (499)

The present discounted value (PDV) of this profit flow is:

st =

∫ ∞

t

xτe
−r(τ−t)dτ

=

∫ ∞

t

xte
α(τ−t)e−r(τ−t)dτ

=

[
1

α− r
xte

(α−r)(τ−t)

]∞
t

=
xt

r − α
.

(500)

Note that a similar result can be obtained in discrete time:
∞∑
i=1

1

(1 + r)i
(1 + α)ixt =

1 + α

1 + r

1

1− 1+α
1+r

xt =
1 + α

r − α
xt =

xt+1

r − α
. (501)

From Ito’s lemma, we have:

ds = αx
1

r − α
dt = αsdt. (502)

Hence under the made assumptions xt and st have the same percentage drift.
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19.3 Arbitrage pricing theorem

Reference: Miranda.

Consider two assets whose values v(s, t) and w(s, t) are functions of an underlying process
s(s, t) that follows an Ito process:

ds = g(s, t)dt+ σ(s, t)dω. (503)

From Ito’s lemma, it follows that:

dv = gvdt+ σvdω, (504)
dw = gwdt+ σwdω. (505)

Let us now build a risk-less portfolio π consisting of 1 unit of v and h units of w:

π = v + hw. (506)

From Ito’s lemma, we know that:

dπ = dv + hdw = (gv + hgw)dt+ (σv + hσw)dω. (507)

To ensure that π is indeed risk-less, we must choose h as follows:

h = − σv

σw

. (508)

Now we can make use of a no-arbitrage condition. Since portfolio π is risk-less, its rate of return
must be equal to the risk-free interest rate r, for otherwise it would be possible to make unbounded
profits without any risk:

dπ = dv − σv

σw

(dw + δwdt) = rπdt. (509)

Here δdt is the cash payment that has to be made to go short in w (that is, the fee for lending one
unit of w during a period of length dt).

By dividing the last equation by dt, one gets:

gv −
σv

σw

(gw + δw) = r

(
v − σv

σw

w

)
, (510)

which after rearranging yields what is called the fundamental arbitrage condition:
gv − rv

σv

=
gw − (r − δ)w

σw

≡ θs. (511)

One can rewrite the fundamental arbitrage condition as follows:

gv = rv + θsσv, (512)
gw = (r − δ)w + θsσw. (513)

These equations are referred to as the single-factor arbitrage pricing theorem. The single-factor
arbitrage pricing theorem states that the expected return on any asset whose value is a function of
s equals the risk-free interest rate plus a risk premium that is proportional to the asset’s volatility.
The proportionality factor θ is called the market price of risk for assets whose values depend on
s.
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19.4 Derivative pricing

Consider a derivative asset whose value y depends on the price s of another, underlying asset.
Let s follow an Ito process:

ds = g(s, t)dt+ σ(s, t)dω. (514)

The derivative asset might, for example, be a call option to buy the underlying asset at a specified
price at a future date.

From Ito’s lemma, we can derive the stochastic differential of y:

dy =

(
yt + gys +

1

2
σ2yss

)
dt+ σysdω. (515)

Hence:

gy = yt + gys +
1

2
σ2yss. (516)

σy = σys. (517)

Now consider the risk-less portfolio π with the derivative asset in long and the underlying asset
in short position:

π = y + hs, (518)

where

h = −σy

σ
= −σys

σ
= −ys. (519)

It follows from the fundamental arbitrage condition that:

gy − ry

σy

=
g − (r − δ)s

σ
(520)

⇔ yt + gys +
1

2
σ2yss − ry = [g − (r − δ)s]ys (521)

⇔ ry = yt + (r − δ)sys +
1

2
σ2yss. (522)

The last equation is the so-called Black-Scholes differential equation. It must be satisfied by any
asset y that derives its value from the underlying asset s. This differential equation can be solved
analytically or numerically once boundary conditions are specified.

When y does not depend on t, we can rewrite the fundamental arbitrage condition as follows:

ry(s) = (r − δ)sy′(s) +
1

2
σ2y′′(s). (523)
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19.4.1 The value of a real option

Suppose the present discounted value of an investment project follows a geometric Brownian mo-
tion:

ds = αsdt+ ζsdω, (524)

where α = r − δ > 0.

The derivative asset has to satisfy the Black-Scholes differential equation:

ry(s) = (r − δ)sy′(s) +
1

2
ζ2s2y′′(s). (525)

This is a second-order homogeneous Euler differential equation:

1

2
ζ2s2y′′(s) + (r − δ)sy′(s)− ry(s) = 0 (526)

⇔ s2y′′(s) + asy′(s) + by(s) = 0, (527)

where

a =
2(r − δ)

ζ2
, b = −2r

ζ2
. (528)

Suppose that (a− 1)2 > 4b. Then the solution is (for s ≤ s∗):

y(s) = A1s
β1 + A2s

β2 , (529)

where

β1,2 =
−(a− 1)±

√
(a− 1)2 − 4b

2
. (530)

Hence:

β1 =
1

2
− r − δ

ζ2
+

√(
r − δ

ζ2
− 1

2

)2

+
2r

ζ2
> 1,

β2 =
1

2
− r − δ

ζ2
−

√(
r − δ

ζ2
− 1

2

)2

+
2r

ζ2
< 0.

(531)

We still need to determine A1, A2 and the strike value of the project, s∗. This can be achieved with
the three boundary conditions:

y(0) = 0

y(s∗) = s∗ − I,

y′(s∗) = 1 (smooth-pasting condition).
(532)
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The first condition implies that A2 = 0.

The second condition implies:

A1 =
s∗ − I

(s∗)β1
. (533)

Finally, the third condition implies:

y′(s∗) = β1A1(s
∗)β1−1 = β1y(s

∗)(s∗)−1 = β1(s
∗ − I)(s∗)−1 = 1 (534)

⇔ s∗ =
β1

β1 − 1
I. (535)

Note that s∗ > I , contradicting the investment rule that suggests investing as soon as the present
discounted value of a project exceeds the investment cost.

The final solution is therefore:

y(s) =

{
A1s

β1 if s ≤ s∗,

s− I if s > s∗.
(536)

19.4.2 Sensitivity to parameter changes

A particularly important result is the following:

s∗ =
β1

β1 − 1
I (537)

Since β1 > 1, this says that the trigger value s∗ for starting the project is above the installation
cost I . Moreover, the lower is β1, the higher will be the gap between s∗ and I since:

d

dβ1

β1

β1 − 1
=

−1

(β1 − 1)2
< 0. (538)

Now how does β1 depend on the parameters ζ , r and δ? Note that when we substitute the solution
y(s) = A1s

β1 into the differential equation (526), we obtain:

1

2
ζ2s2A1β1(β1 − 1)sβ1−2 + (r − δ)sA1β1s

β1−1 − rA1s
β1 = 0 (539)

⇔ Q =
1

2
ζ2β1(β1 − 1) + (r − δ)β1 − r = 0. (540)

Note first that:

∂Q

∂β1

=
1

2
ζ2(2β1 − 1) + (r − δ) > 0 (541)
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Using the total differentials for each of the parameters, we may now determine how β1 reacts to
changes in ζ , r and δ:

∂Q

∂β1︸︷︷︸
>0

∂β1

∂ζ
+

∂Q

∂ζ︸︷︷︸
>0

= 0 ⇒ ∂β1

∂ζ
< 0, (542)

∂Q

∂β1︸︷︷︸
>0

∂β1

∂r
+

∂Q

∂r︸︷︷︸
>0

= 0 ⇒ ∂β1

∂r
< 0, (543)

∂Q

∂β1︸︷︷︸
>0

∂β1

∂δ
+

∂Q

∂δ︸︷︷︸
<0

= 0 ⇒ ∂β1

∂δ
> 0. (544)

Hence:

ζ ↑, r ↑, δ ↓ ⇒ β1 ↓, s∗ ↑, dy(s)

y(s)
↓ . (545)

Note also:

I ↑ ⇒ s∗ ↑ . (546)

The implicit function theorem also permits us to calculate the derivatives directly:

∂β1

∂ζ
= − β1(β1 − 1)

ζ2(2β1 − 1) + (r − δ)
, (547)

∂β1

∂r
= − 2(β1 − 1)

ζ2(2β1 − 1) + (r − δ)
, (548)

∂β1

∂δ
=

2β1

ζ2(2β1 − 1) + (r − δ)
, (549)

∂β1

∂α
=

2

ζ2(2β1 − 1) + (r − δ)
. (550)

19.4.3 Neoclassical theory of investment

Suppose a real asset produces a profit flow governed by the following stochastic differential equa-
tion:

dx = αxdt+ ζxdω. (551)

Let st be the present discounted value of this profit flow. As we have seen, it holds that:

st =
xt

r − α
⇔ xt = (r − α)st. (552)

8 January 2017 97



International Macroeconomics Capital accumulation under uncertainty

According to the neoclassical theory of investment, a firm invests if xt is greater or equal to (r −
α)I:

s∗t = I ⇔ x∗
t = (r − α)I. (553)

The ratio of the expected present value of profits that would flow from an investment project to the
cost of installation, s/I , is also known as Tobin’s q. Tobin’s q is used as a threshold that justifies
investment. Note that q equals 1 in neoclassical investment theory but is greater, and possibly
much greater, than 1 in real options theory:

q =
β1

β1 − 1
> 1. (554)

19.5 Dynamic programming

Net present value of a real asset:

ds = αsdt+ ζsdω. (555)

Bellman equation:

ρy(s) = E(dy) = αsy′(s) +
1

2
ζ2s2y′′(s) (556)

After rearranging, we have:

1

2
ζ2s2y′′(s) + αsy′(s)− ρy(s) = 0. (557)

Note that this equation is almost identical to equation (526) that was based on derivative pricing
theory. The only difference is that the risk-free interest rate r is replaced by the discount rate ρ.
Since the same boundary conditions apply, the solution can be found analogously.

20 Capital accumulation under uncertainty

Reference: Bertola and Caballero (1994).

Consider the following production function:

ỹ1 = Z0k
α
0 , 0 < α < 1, (558)

where the business conditions index, Z0, follows a geometric Brownian motion process:

dZ0 = µZ0dt+ ζZ0dω. (559)

For simplicity, let the price of capital, P0, be constant and equal to one.
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The business conditions index, Z0, is supposed to depend positively on the demand for the coun-
try’s output and on productivity and negatively on the cost of factors other than capital.

Capital is accumulated according to the following continuous-time stochastic differential equation:

dk0 = (−δk0 + k1)dt, (560)

where δ is the depreciation rate and k1dt gross investment.

Now we consider two scenarios, one where investment is reversible (k1 unconstrained) and one
where it is irreversible (k1 ≥ 0).

20.1 Reversible investment

The value function is:

V (k0, Z0) = max
k1

E

(∫ ∞

0

e−rt(Z0k
α
0 − P0k1)dt

)
. (561)

The corresponding Bellman equation is:

rV = max
k1

{
Z0k

α
0 − P0k1 + (−δk0 + k1)Vk0 + µZ0VZ0 +

1

2
ζ2Z2

0VZ0Z0

}
. (562)

Optimal reversible investment must thus satisfy:

Vk0 = P0 = 1. (563)

Let v(k0, Z0) = Vk0(k0, Z0). Thus from the previous equation we know that v(·) = 1. Then if one
differentiates the Bellman equation term by term with respect to k0, one obtains:

rv(·) = αZ0k
α−1
0 − δv(·) + µZ0vZ0(·) +

1

2
ζ2Z2

0vZ0Z0(·), (564)

∂ỹ1
∂k0

= αZ0k
α−1
0 = r + δ, (565)

where r + δ is the so-called user cost of capital.

The optimal capital stock if investment is reversible is therefore:

kr
0 =

(
r + δ

αZ0

) 1
α−1

=

(
αZ0

r + δ

) 1
1−α

. (566)
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20.2 Irreversible investment

The value function in the case of irreversible investment is the same as before:

V (k0, Z0) = max
k1

E

(∫ ∞

0

e−rt(Z0k
α
0 − P0k1)dt

)
. (567)

The Bellman equation remains also unchanged:

rV = max
k1

{
Z0k

α
0 − P0k1 + (−δk0 + k1)Vk0 + µZ0VZ0 +

1

2
ζ2Z2

0VZ0Z0

}
. (568)

However, optimal irreversible investment should satisfy the so-called complementary slackness
conditions:

v(·) ≤ P0 = 1 for all t, (569)
v(·) = P0 = 1 for all t where k1 > 0. (570)

The intuition for the complementary slackness conditions is straightforward:

• The production function exhibits diminishing returns on capital.

• Without restrictions on investment, one would choose investment up to the point where the
marginal increase of the value function equals the price of capital.

• If, however, investment is restricted to be nonnegative, investment is carried out until the
marginal increase of the value function equals the price of capital. Yet when there has been
excessive investment in the past, there will be no new investment and the marginal increase
of the value function will be equal or below the purchasing price of capital.

Hence the value function can still be expressed in terms of the marginal product of capital function,
v(·), but this time it cannot be simplified so easily:

rv(·) = αZ0k
α−1
0 − δv(·) + µZ0vZ0(·) +

1

2
ζ2Z2

0vZ0Z0(·). (571)

A particular solution to this second-order ordinary differential equation is:

vp(·) = αZ0k
α−1
0

r + αδ − µ
. (572)

The homogeneous solutions are of the form:

vh(·) =
(
αZ0k

α−1
0

)B
P 1−B
0 , (573)

where B is a root, or solution, to the characteristic equation:

1

2
ζ2B2 +

(
µ+ (1− α)δ − 1

2
ζ2
)
B − (r + δ) = 0. (574)
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The roots B1 and B2 can be found using the formula for solving quadratic equations:

B1,2 =
−b±

√
b2 − 4ac

2a
, (575)

where

a =
1

2
ζ2, (576)

b = µ+ (1− α)δ − 1

2
ζ2, (577)

c = −(r + δ). (578)

Here we consider only the positive root of the characteristic equation to allow for the possibility
that Z0 = 0. Thus we can denote B1 simply as B.

The solution to equation (571) is therefore:

v(k0, Z0) =
αZ0k

α−1
0

r + αδ − µ
+ C

(
αZ0k

α−1
0

)B
P 1−B
0 , (579)

where C is a constant to be determined based on the initial conditions.

An initial condition can be found by noting that for the desired capital stock it must hold that:

v(ki
0, Z0) = P0 = 1, (580)

vP0(k
i
0, Z0) = 1. (581)

From the second equation, we can deduce that:

C =
1

1−B

(
αZ0(k

i
0)

α−1
)−B

PB
0 , (582)

v(k0, Z0) =
αZ0k

α−1
0

r + αδ − µ
+

1

1−B

(
αZ0k

α−1
0

αZ0(ki
0)

α−1

)B

P0. (583)

Combining this result with the fact that v(ki
0, Z0) = P0, one finds that:

v(ki
0, Z0) =

αZ0(k
i
0)

α−1

r + αδ − µ
+

1

1−B
v(ki

0, Z0) (584)

⇔ αZ0(k
i
0)

α−1 =
B

B − 1
(r + αδ − µ), (585)

From the characteristic equation, it can be deduced that:

B(B − 1)ζ2 + (B − 1)δ +B(µ− αδ)− r = 0 (586)
⇔ B(B − 1)ζ2 + (B − 1)δ +B(µ− αδ − r) + (B − 1)r = 0 (587)

⇔ B

B − 1
=

r + δ +Bζ2

r + αδ − µ
. (588)
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Hence the marginal productivity is given by:

∂ỹ(ki
0, Z0)

∂k0
= αZ0(k

i
0)

α−1 = r + δ +Bζ2. (589)

Finally, the optimal, though not always attainable, capital stock when investment is irreversible,
ki
0, is given by the following equation:

ki
0 =

(
r + δ +Bζ2

αZ0

) 1
α−1

=

(
αZ0

r + δ +Bζ2

) 1
1−α

< kr
0. (590)

20.3 Implications for the current account and currency market pressure

If investment is irreversible, we observe that an economic boom leads to a massive rise in gross
investment. Yet suppose that expectations were too optimistic. Then there will be no corresponding
”negative” gross investment during the ensuing recession.

Recall that the current account is defined as saving minus real investment. As a result, one often
observes a burgeoning current account deficit during a boom triggered by a sudden rise in the
return on real capital, and an improvement of the current account during the recession. Overall,
however, the international investment position, or cumulative current account balance, deteriorates
during a boom-and bust cycle.

Currency market pressure is defined as the cumulative international cash flow of a country (cu-
mulative current account balance plus net cumulative capital inflows) minus the net purchases of
official reserves by the domestic central bank plus the net purchases of official reserves by the
foreign central bank (see lecture notes on currency flows and currency crises). During a boom-
and-bust cycle happens the following:

• Cumulative net capital inflows first rise and then fall back to more or less their initial level.

• The international investment position deteriorates.

• Currency market pressure, and thus the real exchange rate, first rises and then falls even
below its initial level.

• If the domestic central bank wants to stabilize the currency, it can buy reserves and then
sell them. When the central bank runs out of reserves, however, it will have to discontinue
intervention and let the currency depreciate.

This is illustrated in figure 9. Here simple assumptions have been made, for example that Z0,0 =
100, P0 = 1, α = 0.3, µ = 0 etc. Shocks have been set to zero for the simulation. Only the part
of currency market pressure is calculated that depends on real investment (relevant for the current
account) and net cumulative capital inflows.
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Figure 9: Capital accumulation under uncertainty.
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